LDA는 데이타를 잘 구분하게 하는 변환을 제공하고, 얼굴 인식에서 우수한 성능를 보였다. 그러나, LDA는 전체 데이타에 대해 단 하나의 변환 행렬만을 주므로 사람 얼굴과 같은 많은 클래스로 구성되어 있는 복잡한 데이타를 구분하기에 충분하지 않다. 이런 약점을 극복하기 위해 우리는 LDA 혼합 모형이라는 새로운 얼굴 인식 방법을 제안한다. LDA 혼합 모형에서는 모든 클래스가 여러 개의 군집으로 분할되고 각 군집에 대해서 하나의 변환 행렬을 얻는다. 이렇게 더 세세히 표현하는 방법은 분류 성능을 크게 향상시킬 것이다 얼굴 인식 실험 결과, LDA 혼합 모형은 PCA, LDA, PCA 혼합 모형보다 더 우수한 분류 성능을 보여주었다.
LDA는 클래스간 퍼진 정도와 클래스내 퍼진 정도의 비를 최대화하는 변환를 구하는 데이터 구분 기술이다. LDA는 여러 가지 응용에 성공적으로 응용되었지만 그 모델의 단순성과 관련된 두 가지 한계를 가지고 있다. 첫째는 각 클래스의 데이타가 가우시안 분포를 가진다고 가정되므로 복잡한 분포를 갖는 데이타를 구분하는데 실패한다는 것이다. 둘째는 LDA가 클래스의 전체 범위에 대해서 단지 하나의 변환만을 주므로 클래스 기반의 정보를 잃게 된다는 것이다. 본 논문은 위의 문제들을 극복하는 세가지 확장들을 제안한다. 첫 번째 확장은 더 복잡한 분포를 표현할 수 있는 PCA 혼합 모형을 이용하여 클래스내 퍼진 정도를 모델링함으로써 첫째 문제를 극복한다. 두번째 확장은 클래스 기반 특징들을 제공하기 위해서 각 클래스에 대해 다른 변환을 취함으로써 둘째 문제를 극복한다. 셋째 확장은 PCA 혼합 모형의 관점에서 각 클래스를 표현함으로써 앞의 두 확장을 결합하는 것이다. 숫자 인식과 알파벳 인식에 대한 실험에서 LDA의 모든 제안된 확장들이 LDA보다 더 좋은 분류 성능을 보여 주었다.
Two new methods are proposed for an unsupervised adaptation of a language model (LM) with a single sentence for automatic transcription tasks. At the training phase, training documents are clustered by a method known as Latent Dirichlet allocation (LDA), and then a domain-specific LM is trained for each cluster. At the test phase, an adapted LM is presented as a linear mixture of the now trained domain-specific LMs. Unlike previous adaptation methods, the proposed methods fully utilize a trained LDA model for the estimation of weight values, which are then to be assigned to the now trained domain-specific LMs; therefore, the clustering and weight-estimation algorithms of the trained LDA model are reliable. For the continuous speech recognition benchmark tests, the proposed methods outperform other unsupervised LM adaptation methods based on latent semantic analysis, non-negative matrix factorization, and LDA with n-gram counting.
본 논문은 선형분류기인 LDA 융합모델과 최소거리패턴분류법을 이용한 얼굴표정인식 알고리즘 연구에 관한 것이다. 제안된 알고리즘은 얼굴 표정을 인식하기 위해 두 단계의 특징 추출과정과 인식단계를 거치게 된다. 먼저 특징추출 단계에서는 얼굴 표정이 담긴 영상을 PCA를 이용해 고차원에서 저차원의 공간으로 변환한 후, LDA 이용해 특징벡터를 클래스 별로 나누어 분류한다. 다음 단계로 LDA융합모델을 통해 계산된 특징벡터에 최소거리패턴분류법을 적용함으로서 얼굴 표정을 인식한다. 제안된 알고리즘은 6가지 기본 감정(기쁨, 화남, 놀람, 공포, 슬픔, 혐오)으로 구성된 데이터베이스를 이용해 실험한 결과, 기존알고리즘에 비해 향상된 인식률과 특정 표정에 관계없이 고른 인식률을 보임을 확인하였다.
음성 인식기를 대기모드에서 동작 모드로 전환하기 위해 발화하는 짧은 단어를 기동어(Wake Up Word, WUW)라고 하며, 음성 인식기를 실제로 사용하는 사용자가 지정한 기동어를 사용자 정의 기동어라고 한다. 본 논문에서는 이러한 사용자 정의 기동어를 인식하기 위해 기존의 Gaussian Mixture Model-Hidden Markov Model(GMM-HMM) 기반의 시스템, Linear Discriminant Analysis(LDA)를 적용한 LDA-GMM-HMM 기반의 시스템과, LDA-GMM-HMM 모델에서 GMM을 Deep Neural Network(DNN)로 대체한 LDA-DNN-HMM 기반의 시스템을 제작하고 각 시스템의 사용자 정의 기동어 인식 성능 및 비기동어 거절 성능을 비교한다. 또한 기동어 인식기의 체감 성능을 향상시키고자 각 모델에 threshold를 적용하여 기동어 인식 실패율을 약 10 % 수준으로 감소 시킨 후에 비기동어(non-WUW)의 거절 실패율을 비교 평가한다. Threshold 적용시에 LDA-DNN-HMM 기반의 시스템의 경우 기동어 인식 실패율 9.84 % 수준에서 비기동어 거절 실패율이 0.0058 %의 인식 성능을 나타내어 LDA-GMM-HMM 시스템 보다 약 4.82배 향상된 비기동어 거절 성능을 나타낸다. 이러한 결과는 본 논문에서 제작한 LDA-DNN-HMM 모델이 사용자 정의 기동어 인식 시스템을 구축하는데 효과적임을 입증한다.
In Korean, each digit is monosyllable and some pairs are known to have high confusability, causing performance degradation of connected digit recognition systems. To improve the performance, in this paper, we employ various discriminant analyses (DA) including Linear DA (LDA), Weighted Pairwise Scatter LDA WPS-LDA), Heteroscedastic Discriminant Analysis (HDA), and Maximum Likelihood Linear Transformation (MLLT). We also examine several combinations of various DA for additional performance improvement. Experimental results show that applying any DA mentioned above improves the string accuracy, but the amount of improvement of each DA method varies according to the model complexity or number of mixtures per state. Especially, more than 20% of string error reduction is achieved by applying MLLT after WPS-LDA, compared with the baseline system, when class level of DA is defined as a tied state and 1 mixture per state is used.
Nowadays, mel-frequency cesptral coefficients (MFCCs) and Gaussian mixture models (GMMs) are used for the pathological voice detection. This paper suggests a method to improve the performance of the pathological/normal voice classification based on the MFCC-based GMM. We analyze the characteristics of the mel frequency-based filterbank energies using the fisher discriminant ratio (FDR). And the feature vectors through the linear discriminant analysis (LDA) transformation of the filterbank energies (FBE) and the MFCCs are implemented. An accuracy is measured by the GMM classifier. This paper shows that the FBE LDA-based GMM is a sufficiently distinct method for the pathological/normal voice classification, with a 96.6% classification performance rate. The proposed method shows better performance than the MFCC-based GMM with noticeable improvement of 54.05% in terms of error reduction.
This paper proposes a method to improve pathological and normal voice classification performance by combining multiple features such as auditory-based and higher-order features. Their performances are measured by Gaussian mixture models (GMMs) and linear discriminant analysis (LDA). The combination of multiple features proposed by the frame-based LDA method is shown to be an effective method for pathological and normal voice classification, with a 87.0% classification rate. This is a noticeable improvement of 17.72% compared to the MFCC-based GMM algorithm in terms of error reduction.
In this paper, the Gaussian Mixture Model(GMM) which is very robust modeling for pattern classification is proposed to classify wrist motions using surface electromyograms(EMG). EMG is widely used to recognize wrist motions such as up, down, left, right, rest, and is obtained from two electrodes placed on the flexor carpi ulnaris and extensor carpi ulnaris of 15 subjects under no strain condition during wrist motions. Also, EMG-based feature is derived from extracted EMG signals in time domain for fast processing. The estimated features based in difference absolute mean value(DAMV) are used for motion classification through GMM. The performance of our approach is evaluated by recognition rates and it is found that the proposed GMM-based method yields better results than conventional schemes including k-Nearest Neighbor(k-NN), Quadratic Discriminant Analysis(QDA) and Linear Discriminant Analysis(LDA).
생물학 도메인은 약어 표현이 빈번하며, 실제로 문서에서 중요한 의미를 지니는 개체명들이 약어로 표현되는 경우가 많다. 본 연구에서는 토픽과 링크 정보를 이용하여 약어 중의성을 해결하고 동일한 의미를 가지는 다양한 형태의 약어 원형들(variant forms)에 대한 그룹핑을 시도한다. 이를 위하여 LDA(latent Dirichlet allocation) 기반 의미적 의존 링크 토픽 모델(semantic dependency topic model)을 제안한다. 해당 모델은 생성 모델(generative model)의 일종으로 문서 집합의 각 문서에 등장하는 단어들은 문서에서 발생하는 토픽 분포와 토픽 당 단어 분포에 의해 생성되어 있는 것으로 가정하고, 관측 가능한 문서 집합의 단어들로부터 문서에 내재된 숨어있는 토픽 구조를 추론하여 단어 생성과 토픽 파라미터를 연결시킨다. 본 연구에서는 토픽 정보 외에 단어들 사이에 존재하는 의미적 의존성(semantic dependency)을 링크로 정의하고, 단어 간에 존재하는 링크 정보, 특히 원형과 문장에서 공기하는 단어들 사이의 링크를 파라미터화하여 중의성 해결에 이용하였다. 결과적으로 주어진 문서에 등장하는 약어에 대해 가장 가능성 있는 원형은 해당 모델을 이용하여 추론된 단어-토픽, 문서-토픽, 단어-링크 확률에 의해서 결정된다. 제안하는 모델은 MEDLINE 초록으로부터 Entrez 인터페이스를 이용해 22개의 약어 집합과 186개의 가능한 약어 원형을 이용하여 질의를 생성하고, 이를 이용해 검색된 문서들을 대상으로 학습과 테스트에 이용하였다. 실험은, 주어진 문서에 등장하는 해당 약어에 대한 원형이 무엇인지 예측하는 방식으로 98.3%의 정확률의 높은 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.