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Abstract LDA (Linear Discriminant Analysis) is a data discrimination technique that seeks
transformation to maximize the ratio of the between-class scatter and the within-class scatter. While
it has been successfully applied to several applications, it has two limitations, both concerning the
underfitting problem. First, it fails to discriminate data with complex distributions since all data in each
class are assumed to be distributed in the Gaussian manner; and second, it can lose class-wise
information, since it produces only one transformation over the entire range of classes. We propose
three extensions of LDA to overcome the above problems. The first extension overcomes the first
problem by modeling the within-class scatter using a PCA mixture model that can represent more
complex distribution. The second extension overcomes the second problem by taking different
transformation for each class in order to provide class-wise features. The third extension combines
these two modifications by representing each class in terms of the PCA mixture model and taking
different transformation for each mixture component. It is shown that all our proposed extensions of
LDA outperform LDA concerning classification errors for handwritten digit recognition and alphabet
recognition.
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1. Introduction nique to find the projection that maximizes the

ratio of scatter among the data of different classes

LDA i 11-know! lassical statistical h- .
1s a well"known classical statistical tec to scatter within the data of the same class [1].
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retrieval {3], and displays a better performance than
PCA.

Although LDA usually gives good discrimination
performance, two deficiencies are known to exist,
as follows [4]. LDA is too flexible in situations
where there are many highly correlated variables,
and too rigid in situations where the class
boundaries are complex or nonlinear. In the former
case, LDA can overfit the data, and in the latter
case, LDA can underfit the data. To overcome
these deficiencies, a number of extensions of LDA
has been proposed in the literature [4,5]. Recently,
nonlinear extensions of LDA by kernel methods
have also been proposed [6].

In this paper, we concentrate on two drawbacks
of LDA that can cause an underfitting problem.
The first is where LDA assumes that the data of
each class have uni-modal Gaussian distribution.
LDA does not fit well for distributions other than
the uni-modal Gaussian distribution. The second is
where LDA finds one projection over all classes,
and so loses some class-wise important information
for the classification.

To overcome these drawbacks, we introduce
three extensions of LDA. The first extension (PM-
LDA (LDA with PCA Mixture)) overcomes the
first drawback by using the PCA mixture model
for modeling the data of each class. This works
well for data with more complex distribution than
uni-modal Gaussian distribution. This extension is
similar to MDAIB],

Gaussain mixture model, but this extension uses

an extension of LDA by

the PCA mixture model. In the second extension
(C-LDA
overcome the second drawback by extending LDA

(LDA with class-wise features)), we

using class-wise features. We use different pro—

jections for different classes by obtaining an
individual transformation matrix which corresponds
to each class. In this way we can keep some
class-wise important information. Finally, the third
extension (PM-S-LDA (LDA with PCA Mixture
and sub-classwise features)) combines the above
two extensions. We model each class by a PCA
mixture model. By obtaining an individual
transformation matrix for each subclass (mixture

component), we use different projections for dif-

ferent subclasses.

This’ baper is organized as follows. Section 2
describes the LDA. Section 3 describes the PCA
mixture model. Section 4 explains the proposed
extensions of LDA. Section 5 shows the simulation
results of pattern classification problems using
handwritten digit and alphabet data. Finally, we

present our conclusions.

2. LDA

The goal of LDA is to find an orientation for
which the projected samples are well separated [1].
Specifically, LDA seeks a transformation matrix W
that in some sense maximizes the ratio of the
between-class scatter to the within-class scatter.
Initially, we consider a within-class scatter matrix
for the within—class scatter. A within-class scatter
matrix Sy is defined as

Sp= zc) Y, (z—m)(z—m,)", o))
i=1z€C; )

where ¢ is the number of classes, ¢ is a set of
data within the ith class, and m; is the mean of

the ith class.

The within—class scatter matrix represents the
degree of scatter within classes as a summation of
covariance matrices of each class. '

Next, we consider a between-class scatter matrix
for a between-class scatter. A between-class scat-
ter matrix Sp is defined as

c
Sy= Zlnz (m;— m)(m,—m)’ )
=

The between-class scatter matrix represents the
degree of scatter between classes as a covariance
matrix of means of each class.

We seek a transformation matrix that in some
sense maximizes the ratio of the between-class
scatter and the within—class scatter. For the scalar
measure of scatter, we use the determinant of
scatter matrices. The determinant of the scatter
matrix is the product of variances in the trans—
formed directions, since the determinant is the
product of the eigenvalues. Using this measure, the
criterion function J(W) can be defined as
WS, W]

W= s, wi’

3)
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We can obtain the transformation matrix W as
one that maximizes the criterion function J(W).

The columns of optimal W are the generalized
eigenvectors w; that correspond to the largest
eigenvalues in

Sgw,= )\ Spw, (4)

3. PCA Mixture Model

As mentioned before, LDA assumes that the data
of each class have Gaussian distribution. Thus, the
classification performance is limited when the data
distribution is more complex. The data in a certain
class is separated into many subclasses. We can
treat such a case effectively by the PCA mixture
model. We extend LDA by using this advantage of
PCA mixture model in Section 3. Next, we explain
PCA mixture model.

We consider a PCA mixture model which com-
bines the ideas of mixture models and PCA. As in
mixture models [7], the density of data 2z is
represented as the weighted sum of component
densities as

Plz)= kz’jlp(z|ck,9k)P(ck)' ®)

Each component density P(a:lckﬂk) is modeled in

the PCA transformed space as

Plale,0,) = Plsc,9,), (6)
where 8= T(@—pw). T, and p are a PCA
transform matrix and a mean for a mixture

component k. For a mixture component &, the PCA

feature vectors 8, are decorrelated, and so its

covariance matrix %= Els,8,”] is a diagonal mat-
rix whose diagonal elements correspond to the

principal eigenvalues. Next, the conditional density
function Plzlc,6,) of the PCA feature vectors for a

mixture component k can be simplified as

1 -

Play8) = ——eap(— 58,75 ") ©)
(om) % |02
2
m 1 S
= i ——emn(= 2,\1.)’
o
(27r)2)\,3j

where (X, ,'-A,,,) are the m dominant eigen-

values of the feature covariance matrix & for a

mixture component k The proposed model,which

ik £ o1& LDAY &3 783

has no Gaussian error term, can be considered as a
simplified form of Tipping and Bishop’s model [8].

The parameters of a mixture model can be
estimated by an EM algorithm, which maximizes
the likelihood [9). The EM algorithm for the pro-
posed model can be easily derived. Each iteration
consists of two steps: an expectation step (E-step)
followed by a maximization step (M-step). Each
step is run for each mixture component. The EM
Algorithm starts its run after the parameters are
initialized, and stops when the density undergoes
no further changes.

(1) E-step

Given the data set * and the parameters 9(kt) of
the mixture model at the fth iteration, we estimate
the posterior distribution Plc/z,6) using

Plez,6) = Plc,s,6) (8)
PlsJc,.60)Pc,)

K ’
3] Playe,, 68 P(c,)
=1

where K is the number of mixture components
and Paylc,6Y) is computed by Eq. 7.
(2) M-step
(t+1)

The new means p; and the new covariance

matrixes 2,5“”) of the kth mixture component are

obtained by the following update formula.
N

le(ck'zprgil))xp

(t+1) _ P

J7as 9

N
p;1p(cklz”’e‘("”)
Zk(u—l) — E‘[P(cklz,g(t))(z—y;ct+1))T(z—p§ct+1))]
= g}lP(cplz,,ﬂ(”)(zp— sz, pitY) élP(c,,lzpy,,m).
»= »=
10

The new variance parameters )\ﬁ;l) are obtained

by selecting the largest m eigenvalues in the
eigenvector computation as

Zt V=2 D, (11)
PCA transform matrixes Z; is obtained as

[y, g ... 10 ).
4. Extensions of LDA

4.1 Extension of LDA by PCA Mixture Model
(PM-LDA)



784 AR eI =R AZEYO 2 8§ A 32 A Al 8 20068

LDA wuses covariance matrices for the within—
class scatter matrices, which means that data in
each class are assumed to be Gaussian distributed.
When data is not distributed into the uni-modal
Gaussian, LDA does not work well. However, there
are many cases in which data is not distributed
into the uni-modal Gaussian. We extend LDA by
the PCA mixture model, called PM-LDA, which is
capable of modeling more complex distributions,
such as the multi-modal Gaussian.

In PM-~LDA, we apply the PCA mixture model to
each class ¢ where each class is a combination of
s mixture components. Next, we obtained means

my, variances ¥, transformation matrixes T, for

the kth mixture component of the ith class. V; is a

diagonal matrix whose diagonal element is eigen-

values A, ; which is the jth largest eigenvalue of

iv)
the covariance matrix for the kth mixture compo-
nent in the ith class. Next, we define the new
scatter matrices. The covariance matrix for the kth
mixture component in the ith class is Ty Vi Th A

new within—class scatter matrix &y is the
summation of covariance matrices for all classes
and all mixture components as
c s
Sw=21 3 T Va Ty (12)
where ¢ and s are the number of classes and the
number of mixture components of each class,
respectively. The new within-class scatter matrix
SW represents within—class scatter more accurately
because it reflects the distributions of subclasses
(mixture components).
scatter

A new Dbetween-class matrix Sp is

defined by considering the concept of subclasses as
C s
SB=E Znik(m_mu)(m_m‘- )t7 (13)
i=tk=1

where n,, is the number of data belonging to the
kth mixture component in the #th class. The new
between-class scatter matrix Sy also represents the
between-class scatter more accurately because it

reflects the distributions of subclasses.
From the newly defined scatter matrices Sy and
Sg, we can obtain the transformation matrix W that

maximizes the criterion function

J(M=M- (14)
WS, W
The columns of optimal W are the generalized
eigenvectors w; that correspond to the largest
eigenvalues in
Sgw= A S (15)
4.2 Extension of LDA by Class-wise Features

(C-LDA)

LDA finds one transformation matrix over the
whole data of all the classes. This property makes
LDA extract the
Although it may be the merit of LDA, this pro-

global features from data.
perty gives the loss of some class-wise infor-
extend LDA by the

class—-wise features, called C-LDA, in which they

mation. Therefore, we

can be used for classification.
We define a within-class scatter matrix for each

class. The within-class scatter matrix Sy,; for the i
th class is defined as

Sy - ;C.(z— m,)(z—m,)". (16)

For the between-class scatter matrix, we use the

same between-class scatter matrix Sp as used in

LDA such as
8= 3 1, (m—m)(m,—m)t. a7
=

We attempt to find the class-wise transformation

matrix W, using Sy, and Sy for the ¢h class. We

obtain W, that maximizes the following criterion
function
WS, W]
(W) =— . (18)
U WSy, W]

(
(
The jth column of optimal W, is the generalized

eigenvector v, that correspond to the jth largest

eigenvalues in
Sgw;, = )‘ijsm"’g (19)
4.3 Extensions of LDA by PCA Mixture Model
and Subclass-wise Features (PM-S-LDA)
Here, we combine the two extensions of LDA
The first extension of LDA

works well for data with multi-modal Gaussian

mentioned before.

distribution. The second extension of LDA uses
extend LDA by a

combination of two ideas of mixture models and

class-wise features. We
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class-wise features, called PM-S-LDA, in which
each class is modeled by the mixture of many
components and specific features corresponding to
each component are used.

In PM-S-LDA, we apply the PCA mixture model

to each class ¢ with s mixture components. We

then obtained means my,, variances V;, trans-

formation matrixes T, for the kth mixture

<
component in the ith class. ¥ is a diagonal matrix
whose diagonal element is eigenvalues Ai,; Which
is the jth largest eigenvalue of the covariance
matrix for the kth mixture component of the ith
class. Next, we define the new scatter matrices

Sy and Sg as follows.

Swin= ToVaTh . 20
SB= Z Znik (m_ ml'k)(m_ m,-,‘)t (21)
i=1k=1

where 7, is the number of data belonging to the

kth mixture component in the ¢ class.

From the new scatter matrixes Sy, and Sp we

can obtain the transformation matrix W that
maximizes the criterion function
W2, S, W,
T (W) = ————— (22)
e | Wiy S Wy
The ith column of the optimal W, is the

generalized eigenvector wj; that correspond to the
largest eigenvalues in
SpWik = Aik, /SwikWik, 5 (23)

5. Simulation Results and Discussion

5.1 Handwritten digits recognition

We applied LDA and its extensions to hand-
written digits recognition. We used UCI hand-
written digit data [10]. Some digits in the database
are shown in Figure 1. The UCI handwritten digit
data have a training set of 3,823 and a test set of
1797. The original image of each digit has the size
of 32x32 pixels. It is reduced to the size of 8x8
pixels where each pixel is obtained from the
average of the block of 4x4 pixels in the original
image. So each digit is represented by a feature
vector with the size of 64x1.

We applied LDA, its extensions, and ICA (Inde-

Figure 1 Examples of handwritten digits in UCI
database

pendent Component Analysis [12]) to handwritten
digit recognition in the following way. For LDA,
we transform the data and the means m; by W
and assign the data z to the class C;p, whose
corresponding transformed mean is nearest to the
transformed data, as
C;p4 = argmin,|(z—m;) W. (24)
For PM-LDA, we transform the data = and the
means my, by W and assign the data to the class
Cpys— 1pa Whose corresponding transformed mean is
nearest to the transformed data, as
Coar-1pa =are; min, if(z—my) W (25)
For C-LDA, we transform the data z and the
means m; by the W, of each class, and assign the
data to the class Cp_;p4 Whose corresponding
transformed mean is nearest to the transformed
data by the class-wise transformation matrix W,
as
C,_ 1 pa = argmin,|(z—m,) W] (26)
For PM-S-LDA, we transform the data z and
the means my; by the corresponding W, The test
data point is assigned to the class Cpy_ g 1pa
whose corresponding transformed mean is nearest
to ftransformed data by the subclass-wise
transformation matrix Wy, of the kth component in
the ith class, as
Cor- 5= 1pa = argmin; i (z—my) W @7
For ICA, we transform the data £ and the means
m, by Z The test data point is assigned to the

class (o, whose corresponding transformed mean
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is nearest to transformed- data, as
Cioa= L(argminzrl(z—zr)Z), C(19)
Figure 2 plots the classification errors according
to a different number of features for the test data
using LDA and its extentions. ‘The number of
features and classification errors in the best case
are shown in Table 1. ICA result is shown only
in Table 1 because ICA.components do not have
any order. Even though more than 2 r_nixture
components have been taken, it does not show any
significant improvement in classification peformance.
So, we used only two mixture components for
learning the PCA mixture model for each class in
PM-LDA and PM-S-LDA. PM-LDA and PM-S-
LDA have the advantage of extracting more
features, since they have the 8y with higher rank.
The performances of all the three extensions are
better than LDA, and of PM-S-LDA is the best.
We ensure that three extensions are better than
LDA, but the performance is not so good for

handwritten digit recognition (1-NN (1-Nearest

Table 1 The best performance and the correspon-
ding number of features for the hand-
written digit recognition

Methods - Numnber of features test error
LDA 6 8.68%
PM-LDA 19 7.29%
C-LDA 9 5.84%
PM-S-LDA 15 3.78%
ICA 26 10.96%

1 T T T T T T T T
< UDA
-+ PM-LDA
09 * G C-LDA
-¢. PM-§-LDA
08} b
0.7 A
Eo,e» b
§
o5
0.3] -
02f 4
04 Wk e et T
B D S
) 2 r s " Y 12 i TS Ty 20

Nmnboriv‘ijleatures
Figure 2 Classification errors vs. the number of
features for handwritten digits recognition
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Neighbor) (2.00%)), because we use only 10 or 20
means and the number of features is small. In
actual experiments, we can obtain at most 9
effective features for LDA and C-LDA, and can
obtain at most 19 effective features for PM-LDA
and PM-S-LDA, while the orignal
features is 64. These restrictions make the perfor-

number of

mance inferior for handwritten digit recognition.

5.2 Alphabet recognition

We also applied LDA, its extensions, and ICA to
alphabet recognition. Alphabet has 26 classes that
in the digit.

Therefore, we expect that more features can be

is much grater than 10 classes

used and that we will obtain better results than the
handwritten digit recognition. For each class, 300
data are randomly extracted from ETL-6 database
[11]. Some alphabets in ETL-6 database are shown
in Figure 3. The whole data of 7800 areisubdivided
into the set of 5200 for training and the set of 2600
for testing. The original image of each letter has a
size of 64x63 pixels. The image is resized into
64x64 by inserting one additional line of white
pixels into the last line. It is reduced to the size of
8x8 pixels, where each pixel is obtained from the
average of the block of 8x8 pixels in the original
image. So each letter is represented by a feature
vector with the size of 64x1.

We applied LDA and its extensions to alphabet
recognition in the same way as in the classification

C [ T[>
<[]t
MN= A2 |TICY
X ZHg
~<[—[ol]cm

Figure 3 Examples of alphabets in ETL-6 database
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of handwritten digit data.
classification errors according to different number

Figure 4 plots the

of features for the testing data using LDA and its
extensions. The best classification errors and the
corresponding number of features are shown in
Table 2. ICA
because ICA components do not have any order.

result is shown only in Table 2

Even though more than 2 mixture components have
been taken, it does not show any significant
improvement in classification peformance. Therefore,
we used only two mixture components for learning
the PCA mixture model for each class in PM-LDA
and PM-S-LDA. The performances of all the three
extensions are better than that of LDA, and
C-LDA is the best. C-LDA seems to show a
better performance than PM-S-LDA because the
distribution of the alphabet data is relatively simple.
In actual experiments, we can obtain at most 25
effective features for LDA and C-LDA, and can
obtain at most 51 effective features for PM-LDA
and PM-S-LDA, while the orignal number of
features is 64. In this case, extensions of LDA

perform quite well. C-LDA outperforms 1-NN

Table 2 The best performance and the corresponding
number of features for alphabet recognition

Methods Number of features test error
LDA 17 10.96%
PM-LDA 19 9.73%
C-LDA 25 1.88%
PM-S-LDA 22 4.19%

ICA 23 29.96%
1 T T
A b éﬁﬁm
oo} o ¢-LDA
> PM-S-LDA
o "0:*?& |
ol u BS [ "*f’*#-ﬁ PR Z T T LY L0
. . ‘*”'rg‘é;zg.g;g.g-g_gg,gggggo0 e-o-?o-oow‘m &Ge
[ s 10 15 20 25 30 35 40
Number of features

Figure 4 Classification errors vs. the number of

features for alphabet recognition

(1-Nearest Neighbor) (2.92%), where the features of
8x8 pixels were used and all the training set data

are used for classification.

6. Conclusion

We proposed three extensions of LDA by using
mixture models and class-wise features in order to
overcome the underfitting problem of LDA. The
first PM-LDA, models the within—class scatter
more accurately by using a PCA mixture model.
The second, C-LDA, uses class-wise transfor-
mation matrix, and extract features in a class-wise
The third, PM-S-LDA combines two
ideas; that is, models each class by the PCA mix-

manner.

ture model and extract features in the subclass—
manner by using the subclass-wise transformation
matrix. In the simulation, all the proposed
extensions showed better classification performance
than LDA.

There

extensions. First, the maximum number of effective

are two problems with the proposed

features are too small for the data with a small
number of classes. Second, the extensions may not
work well for data in which have a small number
of samples in each class. In such cases, there may
be a singularity problem for the within—class
scatter matrix in C-LDA and PM-S-LDA, and
PCA mixture models may not be learned well in
PM-LDA and PM-S-LDA. In the future, we will

attempt to solve these two problems.
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