• Title/Summary/Keyword: LDA Algorithm

Search Result 159, Processing Time 0.037 seconds

Collaborative Filtering Recommendation Algorithm Based on LDA2Vec Topic Model (LDA2Vec 항목 모델을 기반으로 한 협업 필터링 권장 알고리즘)

  • Xin, Zhang;Lee, Scott Uk-Jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.385-386
    • /
    • 2020
  • In this paper, we propose a collaborative filtering recommendation algorithm based on the LDA2Vec topic model. By extracting and analyzing the article's content, calculate their semantic similarity then combine the traditional collaborative filtering algorithm to recommend. This approach may promote the system's recommend accuracy.

  • PDF

A Study on Fuzzy Wavelet LDA Mixed Model for an effective Face Expression Recognition (효과적인 얼굴 표정 인식을 위한 퍼지 웨이브렛 LDA융합 모델 연구)

  • Rho, Jong-Heun;Baek, Young-Hyun;Moon, Sung-Ryong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.759-765
    • /
    • 2006
  • In this paper, it is proposed an effective face expression recognition LDA mixed mode using a triangularity membership fuzzy function and wavelet basis. The proposal algorithm gets performs the optimal image, fuzzy wavelet algorithm and Expression recognition is consisted of face characteristic detection step and face Expression recognition step. This paper could applied to the PCA and LDA in using some simple strategies and also compares and analyzes the performance of the LDA mixed model which is combined and the facial expression recognition based on PCA and LDA. The LDA mixed model is represented by the PCA and the LDA approaches. And then we calculate the distance of vectors dPCA, dLDA from all fates in the database. Last, the two vectors are combined according to a given combination rule and the final decision is made by NNPC. In a result, we could showed the superior the LDA mixed model can be than the conventional algorithm.

Fault Diagnosis of Induction Motor by Fusion Algorithm based on PCA and IDA (PCA와 LDA에 기반을 둔 융합알고리즘에 의한 유도전동기의 고장진단)

  • Jeon, Byeong-Seok;Lee, Dae-Jong;Lee, Sang-Hyuk;Ryu, Jeong-Woong;Chun, Myung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.2
    • /
    • pp.152-159
    • /
    • 2005
  • In this paper, we propose a diagnosis algorithm using fusion wかd based on PCA and LDA to detect fault states of the induction motor that is applied to various industrial fields. After yielding a feature vector from the current value measured by an experiment using PCA and LDA, training data is made to produce each matching value. In a diagnostic step, two matching values yielded by PCA and LDA are fused by probability model and finally verified. Since the proposed diagnosis algorithm takes only merits of PCA and LDA it shows excellent results under noisy environments. The simulation results to verify the usability of the proposed algorithm showed better performance than the case just using conventional PCA or LDA.

Comparison of LDA and PCA for Korean Pro Go Player's Opening Recognition (한국 프로바둑기사 포석 인식을 위한 선형판별분석과 주성분분석 비교)

  • Lee, Byung-Doo
    • Journal of Korea Game Society
    • /
    • v.13 no.4
    • /
    • pp.15-24
    • /
    • 2013
  • The game of Go, which is originated at least more than 2,500 years ago, is one of the oldest board games in the world. So far the theoretical studies concerning to the Go openings are still insufficient. We applied traditional LDA algorithm to recognize a pro player's opening to a class obtained from the training openings. Both class-independent LDA and class-dependent LDA methods are conducted with the Go game records of the Korean top 10 professional Go players. Experimental result shows that the average recognition rate of class-independent LDA is 14% and class-dependent LDA 12%, respectively. Our research result also shows that in contrary to our common sense the algorithm based on PCA outperforms the algorithm based on LDA and reveals the new fact that the Euclidean distance metric method rarely does not inferior to LDA.

The Embodiment of the Real-Time Face Recognition System Using PCA-based LDA Mixture Algorithm (PCA 기반 LDA 혼합 알고리즘을 이용한 실시간 얼굴인식 시스템 구현)

  • 장혜경;오선문;강대성
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.45-50
    • /
    • 2004
  • In this paper, we propose a new PCA-based LDA Mixture Algorithm(PLMA) for real-time face recognition system. This system greatly consists of the two parts: 1) face extraction part; 2) face recognition part. In the face extraction part we applied subtraction image, color filtering, eyes and mouth region detection, and normalization method, and in the face recognition part we used the method mixing PCA and LDA in extracted face candidate region images. The existing recognition system using only PCA showed low recognition rates, and it is hard in the recognition system using only LDA to apply LDA to the input images as it is when the number of image pixels ire small as compared with the training set. To overcome these shortcomings, we reduced dimension as we apply PCA to the normalized images, and apply LDA to the compressed images, therefore it is possible for us to do real-time recognition, and we are also capable of improving recognition rates. We have experimented using self-organized DAUface database to evaluate the performance of the proposed system. The experimental results show that the proposed method outperform PCA, LDA and ICA method within the framework of recognition accuracy.

2D Direct LDA Algorithm for Face Recognition (얼굴 인식을 위한 2D DLDA 알고리즘)

  • Cho Dong-uk;Chang Un-dong;Kim Young-gil;Song Young-jun;Ahn Jae-hyeong;Kim Bong-hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1162-1166
    • /
    • 2005
  • A new low dimensional feature representation technique is presented in this paper. Linear discriminant analysis is a popular feature extraction method. However, in the case of high dimensional data, the computational difficulty and the small sample size problem are often encountered. In order to solve these problems, we propose two dimensional direct LDA algorithm, which directly extracts the image scatter matrix from 2D image and uses Direct LDA algorithm for face recognition. The ORL face database is used to evaluate the performance of the proposed method. The experimental results indicate that the performance of the proposed method is superior to DLDA.

An Ensemble Classifier using Two Dimensional LDA

  • Park, Cheong-Hee
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.6
    • /
    • pp.817-824
    • /
    • 2010
  • Linear Discriminant Analysis (LDA) has been successfully applied for dimension reduction in face recognition. However, LDA requires the transformation of a face image to a one-dimensional vector and this process can cause the correlation information among neighboring pixels to be disregarded. On the other hand, 2D-LDA uses 2D images directly without a transformation process and it has been shown to be superior to the traditional LDA. Nevertheless, there are some problems in 2D-LDA. First, it is difficult to determine the optimal number of feature vectors in a reduced dimensional space. Second, the size of rectangular windows used in 2D-LDA makes strong impacts on classification accuracies but there is no reliable way to determine an optimal window size. In this paper, we propose a new algorithm to overcome those problems in 2D-LDA. We adopt an ensemble approach which combines several classifiers obtained by utilizing various window sizes. And a practical method to determine the number of feature vectors is also presented. Experimental results demonstrate that the proposed method can overcome the difficulties with choosing an optimal window size and the number of feature vectors.

The Suggestion of LINF Algorithm for a Real-time Face Recognition System (실시간 얼굴인식 시스템을 위한 새로운 LINF 알고리즘의 제안)

  • Jang Hye-Kyoung;Kang Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.79-86
    • /
    • 2005
  • In this paper, we propose a new LINF(Linear Independent Non-negative Factorization) algorithm for real-time face recognition systea This system greatly consists of the two parts: 1) face extraction part; 2) face recognition part. In the face extraction Part we applied subtraction image, the detection of eye and mouth region , and normalization method, and then in the face recognition Part we used LINF in extracted face candidate region images. The existing recognition system using only PCA(Principal Component Analysis) showed low recognition rates, and it was hard in the recognition system using only LDA(Linear Discriminants Analysis) to apply LDA directly when the training set is small. To overcome these shortcomings, we reduced dimension as the matrix that had non-negative value to be different from former eigenfaces and then applied LDA to the matrix in the proposed system We have experimented using self-organized DAIJFace database and ORL database offered by AT(')T laboratory in Cambridge, U.K. to evaluate the performance of the proposed system. The experimental results showed that the proposed method outperformed PCA, LDA, ICA(Independent Component Analysis) and PLMA(PCA-based LDA mixture algorithm) method within the framework of recognition accuracy.

Fast algorithm for online linear discriminant analysis

  • Kazuyuki Hiraoka;Masashi Hamahira;Hidai, Ken-ichi;Hiroshi Mizoguchi;Taketoshi Mishima;Shuji Yoshizawa
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.274-277
    • /
    • 2000
  • Linear discriminant analysis (LDA) is a basic tool of pattern recognition, and it is used in extensive fields, e.g. face identification. However, LDA is poor at adaptability since it is a batch type algorithm. To overcome this, a new algorithm of online LDA is proposed in the present paper. It is experimentally shown that the new algorithm is about two times faster than the previously proposed algorithm.

  • PDF

Relevance-Weighted $(2D)^2$LDA Image Projection Technique for Face Recognition

  • Sanayha, Waiyawut;Rangsanseri, Yuttapong
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.438-447
    • /
    • 2009
  • In this paper, a novel image projection technique for face recognition application is proposed which is based on linear discriminant analysis (LDA) combined with the relevance-weighted (RW) method. The projection is performed through 2-directional and 2-dimensional LDA, or $(2D)^2$LDA, which simultaneously works in row and column directions to solve the small sample size problem. Moreover, a weighted discriminant hyperplane is used in the between-class scatter matrix, and an RW method is used in the within-class scatter matrix to weigh the information to resolve confusable data in these classes. This technique is called the relevance-weighted $(2D)^2$LDA, or RW$(2D)^2$LDA, which is used for a more accurate discriminant decision than that produced by the conventional LDA or 2DLDA. The proposed technique has been successfully tested on four face databases. Experimental results indicate that the proposed RW$(2D)^2$LDA algorithm is more computationally efficient than the conventional algorithms because it has fewer features and faster times. It can also improve performance and has a maximum recognition rate of over 97%.