• Title/Summary/Keyword: LDA (Latent Dirichlet allocation)

Search Result 183, Processing Time 0.039 seconds

희소 부호화 기법과 토픽 모델링을 통한 이미지 분류 모델

  • Jeon, Jin;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.49-50
    • /
    • 2015
  • 본 논문에서는 이미지를 시각적 단어로 표현하여 분석하는 기법인 bag-of-visual words (BoW) 모델을 기반으로 latent dirichlet allocation (LDA) 모델을 결합하여 시각적 단어의 구조를 파악하여 이미지를 분류할 수 있는 모델을 제안한다. 우선 이미지를 시각적 단어로 기존의 방법보다 정확하게 표현하기 위해서 희소 부호화(sparse coding) 기법을 적용한다. 기존의 BoW 모델은 하나의 이미지 패치를 하나의 단어로 표현하였지만, 희소 부호화 기법을 통해 하나의 이미지 패치를 여러 개의 단어로 표현할 수 있다. 제안하는 모델을 이용하여 이미지를 분류하기 위해서 분류 성능 측정에 많이 쓰이는 multi-class SVM 기법을 이용한다. UIUC 스포츠 데이터를 이용한 성능 측정을 통해 제안한 기법의 클래스 분류 성능을 검증하였다.

  • PDF

An analysis for Purpose of Visiting via GPS Sequences Learning of Topic Models (GPS 데이터 기반 주제 학습을 통한 모바일폰 사용자 방문 목적 분석)

  • Kang, Myung-Gu;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.274-277
    • /
    • 2011
  • 최근 많은 연구들이 사람들의 삶을 예측하기 위해 개인의 일상적인 패턴을 표현하는 구조를 찾아내는 것을 목표로 하고 있다. 이러한 목표를 위해 사용되는 데이터 중에서 핸드폰을 통해 수집된 데이터는 사용자가 항상 소지하고 있다는 점에서 그 가치가 높다. 그 중에서도 GPS 데이터는 다른 로그 데이터에 비해 가시적이기 때문에 개인의 일상을 표현하는데 더 효율적이다. 본 연구는 핸드폰에서 수집한 GPS 데이터를 Latent Dirichlet Allocation (LDA) 모델에 적용하여 사용자의 행동을 분석하는 주제를 다루려고 한다. 특히 이 논문에서는 개인의 현재 장소가 행동에 영향을 크게 미치는 요소라 가정하고 사용자가 특정 지역을 찾아갔을 때 방문 목적을 찾는 것으로 행동 분석을 구체화하였다. 아래의 내용에서 인사동에서 수집한 GPS 데이터를 이 모델에 적용하여 사용자에게 중요한 위치들로 이루어진 '주제들'을 발견하고, 인사동 방문 목적을 추론하는 실험을 설명할 것이다.

Collaborative Filtering Using Topic Models for Rating Based Recommender Systems (평점 기반 추천시스템을 위한 토픽 모델 협업필터링)

  • Kim, Kwang-Seob;Jung, Ho-Gyeong;Lee, Hyun-Jong;Lee, Hyung-Joon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.381-383
    • /
    • 2012
  • 협업필터링은 지금까지 많은 추천시스템 연구에서 비교대상이 되거나 더 좋은 추천시스템 방법론을 개발하기 위해서 응용되고 있다. 일반적으로 협업필터링 기법은 명시적으로 관찰된 사용자들의 행동을 기반하는 방법이다. 본 연구에서는 LDA(Latent Dirichlet Allocation)을 이용해 사용자와 추천 대상이 되는 아이템의 숨겨진 특성을 추출하고, 이를 협업필터링기법에 응용했다. 영화 추천시스템 구축을 위한 실험에서, 사용자의 선호도는 다양한 영화 장르를 선호하는 비율로 나타난다는 가정(사용자기반)과 영화 또한 장르의 비율로 표현이 된다는 가정(아이템기반)을 했다. 이러한 가정을 토대로 사용자 사이와 영화 사이 간의 유사도를 정의하고, 협업필터링에 적용했을 때, 전통적인 협업필터링 기법보다 뛰어난 결과를 얻을 수 있었다.

Topic modeling based similar user grouping and TV program recommendation for Smart TV (토픽 모델링을 이용한 유사 시청 사용자 그룹핑 및 TV 프로그램 추천 알고리듬)

  • Pyo, Shinjee;Kim, EunHui;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.117-120
    • /
    • 2012
  • 본 논문에서는 토픽 모델링 기반 TV 프로그램 유사 시청 사용자 그룹핑 및 이를 이용한 TV 프로그램 콘텐츠 추천 알고리듬을 제안하였다. 제안 기술은 토픽 모델링 기법 중 Latent Dirichlet Allocation(LDA) 방법을 이용하여 TV프로그램 시청 기록 내에서 은닉된 유사 사용자들을 그룹핑하고 이러한 유사 시청 사용자 그룹 정보를 이용하여 사용자에게 선호 TV 프로그램 콘텐츠를 자동으로 추천하는 알고리듬이다. 제안된 자동 추천 알고리듬의 성능평가를 위해 실제 TV 시청기록 데이터를 이용하여 훈련 기간과 검증 기간을 나누어 훈련 기간 동안 제안한 알고리듬을 이용하여 사용자 개인에 대한 추천 TV 프로그램 콘텐츠 목록을 생성하여 검증 기간 동안에 실제 추천된 TV프로그램을 얼마나 시청했는지를 측정하여 추천 정확도를 검증하였다.

  • PDF

Efficient Method for Image Representation Using Topic Modeling (토픽 모델링을 이용한 이미지의 효율적인 표현방법)

  • Lee, Ba-Do;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.319-322
    • /
    • 2011
  • 시각 피처를 사용한 이미지 표현은 이미지 검색 분야에서 이미 광범위하게 사용되고 있다. 특히 이미지 자체에 태깅이 되어있지 않거나 다른 추가 정보가 없는 경우에는 이미지 콘텐츠자체의 정보만으로 검색하기 위해서는 이러한 전처리가 필수적이다. 이미지로 부터 얻어진 시각적 피처들이 시각 단어로 사용되기 위해서는 k-means 와 같은 군집 알고리즘을 통한 시각적 피처의 양자화를 위한 전처리가 필요한데, 시각 단어의 개수 k를 정하는데 모호함이 있다. 본 논문에서는 임의의 k를 사용하더라도, 대표적 토픽 모델링 기법인 LDA (Latent Dirichlet Allocation)를 사용하여 데이터의 차원을 줄이게 되면 여러개의 시각적 단어들의 조합을 각각의 토픽이 나타낼 수 있게 됨을 이미지 검색 성능으로써 확인해 보고, 이러한 방법을 사용하면 표현형의 사이즈를 줄일 수 있고, 검색에 있어서도 이미지의 유사성을 더욱 효과적으로 표현할 수 있음을 확인해 본다.

A Study on Automatic Analysis System of National Defense Articles (국방 기사 자동 분석 시스템 구축 방안 연구)

  • Kim, Hyunjung;Kim, Wooju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.86-93
    • /
    • 2018
  • Since media articles, which have a great influence on public opinion, are transmitted to the public through various media, it is very difficult to analyze them manually. There are many discussions on methods that can collect, process, and analyze documents in the academia, but this is mostly done in the areas related to politics and stocks, and national-defense articles are poorly researched. In this study, we will explain how to build an automatic analysis system of national defense articles that can collect information on defense articles automatically, and can process information quickly by using topic modeling with LDA, emotional analysis, and extraction-based text summarization.

Research Trend Analysis by using Text-Mining Techniques on the Convergence Studies of AI and Healthcare Technologies (텍스트 마이닝 기법을 활용한 인공지능과 헬스케어 융·복합 분야 연구동향 분석)

  • Yoon, Jee-Eun;Suh, Chang-Jin
    • Journal of Information Technology Services
    • /
    • v.18 no.2
    • /
    • pp.123-141
    • /
    • 2019
  • The goal of this study is to review the major research trend on the convergence studies of AI and healthcare technologies. For the study, 15,260 English articles on AI and healthcare related topics were collected from Scopus for 55 years from 1963, and text mining techniques were conducted. As a result, seven key research topics were defined : "AI for Clinical Decision Support System (CDSS)", "AI for Medical Image", "Internet of Healthcare Things (IoHT)", "Big Data Analytics in Healthcare", "Medical Robotics", "Blockchain in Healthcare", and "Evidence Based Medicine (EBM)". The result of this study can be utilized to set up and develop the appropriate healthcare R&D strategies for the researchers and government. In this study, text mining techniques such as Text Analysis, Frequency Analysis, Topic Modeling on LDA (Latent Dirichlet Allocation), Word Cloud, and Ego Network Analysis were conducted.

Exploring the Trends and Challenges of Artificial Intelligence Education through the Analysis of Newspapers in Korea, 1991-2020: A topic-modeling approach

  • Kim, Sung-ae
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.4
    • /
    • pp.216-221
    • /
    • 2020
  • Artificial intelligence (AI), an essential skill of the Fourth Industrial Revolution, is being actively taught in higher education; however, AI education is only in the preparatory stage in elementary, middle, and high schools. Investigating various newspaper articles related to AI education to date can aid in basic data collection, which is an important process in the preparatory stage. Accordingly, 13,378 newspaper articles were collected from a total of 21 newspapers, and five topics were extracted using the latent Dirichlet allocation (LDA)-based topic model along with frequency analysis. Newspaper articles from the early 2000s expanded to technologies related to the Fourth Industrial Revolution. Accordingly, education in AI fields should be linked with education in AI-based technology. In addition, efforts should be made to secure the continuity and sequence of AI education in cooperation with related higher institutions and companies.

Analysis of Success Factors of Electric Scooter Sharing Service Using User Review Text Mining

  • Kyoung-ae Seo;Jung Seung Lee
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.2
    • /
    • pp.19-30
    • /
    • 2023
  • This study aims to analyze service improvement and success factors of electric scooter sharing service companies by using text mining after collecting reviews of shared electric scooter service applications among various models of sharing economy. In this study, the factors of satisfaction and dissatisfaction of service users were identified using the term frequency inverse document frequency (TF-IDF) technique, and topics for each keyword were extracted using the Latent Dirichlet Allocation (LDA) Topic Modeling technique. According to the analysis results, the main topics were entertainment, safety, service area, application complaints, use complaints, convenience, and mobility. Using the analysis results of this study, employees and researchers of electric scooter sharing service companies will be able to contribute to the improvement and success of related services.

Study of Mental Disorder Schizophrenia, based on Big Data

  • Hye-Sun Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.279-285
    • /
    • 2023
  • This study provides academic implications by considering trends of domestic research regarding therapy for Mental disorder schizophrenia and psychosocial. For the analysis of this study, text mining with the use of R program and social network analysis method have been used and 65 papers have been collected The result of this study is as follows. First, collected data were visualized through analysis of keywords by using word cloud method. Second, keywords such as intervention, schizophrenia, research, patients, program, effect, society, mind, ability, function were recorded with highest frequency resulted from keyword frequency analysis. Third, LDA (latent Dirichlet allocation) topic modeling result showed that classified into 3 keywords: patient, subjects, intervention of psychosocial, efficacy of interventions. Fourth, the social network analysis results derived connectivity, closeness centrality, betweennes centrality. In conclusion, this study presents significant results as it provided basic rehabilitation data for schizophrenia and psychosocial therapy through new research methods by analyzing with big data method by proposing the results through visualization from seeking research trends of schizophrenia and psychosocial therapy through text mining and social network analysis.