Proceedings of the Korean Society of Broadcast Engineers Conference
/
2015.07a
/
pp.49-50
/
2015
본 논문에서는 이미지를 시각적 단어로 표현하여 분석하는 기법인 bag-of-visual words (BoW) 모델을 기반으로 latent dirichlet allocation (LDA) 모델을 결합하여 시각적 단어의 구조를 파악하여 이미지를 분류할 수 있는 모델을 제안한다. 우선 이미지를 시각적 단어로 기존의 방법보다 정확하게 표현하기 위해서 희소 부호화(sparse coding) 기법을 적용한다. 기존의 BoW 모델은 하나의 이미지 패치를 하나의 단어로 표현하였지만, 희소 부호화 기법을 통해 하나의 이미지 패치를 여러 개의 단어로 표현할 수 있다. 제안하는 모델을 이용하여 이미지를 분류하기 위해서 분류 성능 측정에 많이 쓰이는 multi-class SVM 기법을 이용한다. UIUC 스포츠 데이터를 이용한 성능 측정을 통해 제안한 기법의 클래스 분류 성능을 검증하였다.
Proceedings of the Korean Information Science Society Conference
/
2011.06a
/
pp.274-277
/
2011
최근 많은 연구들이 사람들의 삶을 예측하기 위해 개인의 일상적인 패턴을 표현하는 구조를 찾아내는 것을 목표로 하고 있다. 이러한 목표를 위해 사용되는 데이터 중에서 핸드폰을 통해 수집된 데이터는 사용자가 항상 소지하고 있다는 점에서 그 가치가 높다. 그 중에서도 GPS 데이터는 다른 로그 데이터에 비해 가시적이기 때문에 개인의 일상을 표현하는데 더 효율적이다. 본 연구는 핸드폰에서 수집한 GPS 데이터를 Latent Dirichlet Allocation (LDA) 모델에 적용하여 사용자의 행동을 분석하는 주제를 다루려고 한다. 특히 이 논문에서는 개인의 현재 장소가 행동에 영향을 크게 미치는 요소라 가정하고 사용자가 특정 지역을 찾아갔을 때 방문 목적을 찾는 것으로 행동 분석을 구체화하였다. 아래의 내용에서 인사동에서 수집한 GPS 데이터를 이 모델에 적용하여 사용자에게 중요한 위치들로 이루어진 '주제들'을 발견하고, 인사동 방문 목적을 추론하는 실험을 설명할 것이다.
Kim, Kwang-Seob;Jung, Ho-Gyeong;Lee, Hyun-Jong;Lee, Hyung-Joon
Proceedings of the Korean Information Science Society Conference
/
2012.06b
/
pp.381-383
/
2012
협업필터링은 지금까지 많은 추천시스템 연구에서 비교대상이 되거나 더 좋은 추천시스템 방법론을 개발하기 위해서 응용되고 있다. 일반적으로 협업필터링 기법은 명시적으로 관찰된 사용자들의 행동을 기반하는 방법이다. 본 연구에서는 LDA(Latent Dirichlet Allocation)을 이용해 사용자와 추천 대상이 되는 아이템의 숨겨진 특성을 추출하고, 이를 협업필터링기법에 응용했다. 영화 추천시스템 구축을 위한 실험에서, 사용자의 선호도는 다양한 영화 장르를 선호하는 비율로 나타난다는 가정(사용자기반)과 영화 또한 장르의 비율로 표현이 된다는 가정(아이템기반)을 했다. 이러한 가정을 토대로 사용자 사이와 영화 사이 간의 유사도를 정의하고, 협업필터링에 적용했을 때, 전통적인 협업필터링 기법보다 뛰어난 결과를 얻을 수 있었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2012.07a
/
pp.117-120
/
2012
본 논문에서는 토픽 모델링 기반 TV 프로그램 유사 시청 사용자 그룹핑 및 이를 이용한 TV 프로그램 콘텐츠 추천 알고리듬을 제안하였다. 제안 기술은 토픽 모델링 기법 중 Latent Dirichlet Allocation(LDA) 방법을 이용하여 TV프로그램 시청 기록 내에서 은닉된 유사 사용자들을 그룹핑하고 이러한 유사 시청 사용자 그룹 정보를 이용하여 사용자에게 선호 TV 프로그램 콘텐츠를 자동으로 추천하는 알고리듬이다. 제안된 자동 추천 알고리듬의 성능평가를 위해 실제 TV 시청기록 데이터를 이용하여 훈련 기간과 검증 기간을 나누어 훈련 기간 동안 제안한 알고리듬을 이용하여 사용자 개인에 대한 추천 TV 프로그램 콘텐츠 목록을 생성하여 검증 기간 동안에 실제 추천된 TV프로그램을 얼마나 시청했는지를 측정하여 추천 정확도를 검증하였다.
Proceedings of the Korean Information Science Society Conference
/
2011.06c
/
pp.319-322
/
2011
시각 피처를 사용한 이미지 표현은 이미지 검색 분야에서 이미 광범위하게 사용되고 있다. 특히 이미지 자체에 태깅이 되어있지 않거나 다른 추가 정보가 없는 경우에는 이미지 콘텐츠자체의 정보만으로 검색하기 위해서는 이러한 전처리가 필수적이다. 이미지로 부터 얻어진 시각적 피처들이 시각 단어로 사용되기 위해서는 k-means 와 같은 군집 알고리즘을 통한 시각적 피처의 양자화를 위한 전처리가 필요한데, 시각 단어의 개수 k를 정하는데 모호함이 있다. 본 논문에서는 임의의 k를 사용하더라도, 대표적 토픽 모델링 기법인 LDA (Latent Dirichlet Allocation)를 사용하여 데이터의 차원을 줄이게 되면 여러개의 시각적 단어들의 조합을 각각의 토픽이 나타낼 수 있게 됨을 이미지 검색 성능으로써 확인해 보고, 이러한 방법을 사용하면 표현형의 사이즈를 줄일 수 있고, 검색에 있어서도 이미지의 유사성을 더욱 효과적으로 표현할 수 있음을 확인해 본다.
Journal of the Korea Institute of Military Science and Technology
/
v.21
no.1
/
pp.86-93
/
2018
Since media articles, which have a great influence on public opinion, are transmitted to the public through various media, it is very difficult to analyze them manually. There are many discussions on methods that can collect, process, and analyze documents in the academia, but this is mostly done in the areas related to politics and stocks, and national-defense articles are poorly researched. In this study, we will explain how to build an automatic analysis system of national defense articles that can collect information on defense articles automatically, and can process information quickly by using topic modeling with LDA, emotional analysis, and extraction-based text summarization.
The goal of this study is to review the major research trend on the convergence studies of AI and healthcare technologies. For the study, 15,260 English articles on AI and healthcare related topics were collected from Scopus for 55 years from 1963, and text mining techniques were conducted. As a result, seven key research topics were defined : "AI for Clinical Decision Support System (CDSS)", "AI for Medical Image", "Internet of Healthcare Things (IoHT)", "Big Data Analytics in Healthcare", "Medical Robotics", "Blockchain in Healthcare", and "Evidence Based Medicine (EBM)". The result of this study can be utilized to set up and develop the appropriate healthcare R&D strategies for the researchers and government. In this study, text mining techniques such as Text Analysis, Frequency Analysis, Topic Modeling on LDA (Latent Dirichlet Allocation), Word Cloud, and Ego Network Analysis were conducted.
Journal of information and communication convergence engineering
/
v.18
no.4
/
pp.216-221
/
2020
Artificial intelligence (AI), an essential skill of the Fourth Industrial Revolution, is being actively taught in higher education; however, AI education is only in the preparatory stage in elementary, middle, and high schools. Investigating various newspaper articles related to AI education to date can aid in basic data collection, which is an important process in the preparatory stage. Accordingly, 13,378 newspaper articles were collected from a total of 21 newspapers, and five topics were extracted using the latent Dirichlet allocation (LDA)-based topic model along with frequency analysis. Newspaper articles from the early 2000s expanded to technologies related to the Fourth Industrial Revolution. Accordingly, education in AI fields should be linked with education in AI-based technology. In addition, efforts should be made to secure the continuity and sequence of AI education in cooperation with related higher institutions and companies.
Journal of Information Technology Applications and Management
/
v.30
no.2
/
pp.19-30
/
2023
This study aims to analyze service improvement and success factors of electric scooter sharing service companies by using text mining after collecting reviews of shared electric scooter service applications among various models of sharing economy. In this study, the factors of satisfaction and dissatisfaction of service users were identified using the term frequency inverse document frequency (TF-IDF) technique, and topics for each keyword were extracted using the Latent Dirichlet Allocation (LDA) Topic Modeling technique. According to the analysis results, the main topics were entertainment, safety, service area, application complaints, use complaints, convenience, and mobility. Using the analysis results of this study, employees and researchers of electric scooter sharing service companies will be able to contribute to the improvement and success of related services.
International Journal of Advanced Culture Technology
/
v.11
no.4
/
pp.279-285
/
2023
This study provides academic implications by considering trends of domestic research regarding therapy for Mental disorder schizophrenia and psychosocial. For the analysis of this study, text mining with the use of R program and social network analysis method have been used and 65 papers have been collected The result of this study is as follows. First, collected data were visualized through analysis of keywords by using word cloud method. Second, keywords such as intervention, schizophrenia, research, patients, program, effect, society, mind, ability, function were recorded with highest frequency resulted from keyword frequency analysis. Third, LDA (latent Dirichlet allocation) topic modeling result showed that classified into 3 keywords: patient, subjects, intervention of psychosocial, efficacy of interventions. Fourth, the social network analysis results derived connectivity, closeness centrality, betweennes centrality. In conclusion, this study presents significant results as it provided basic rehabilitation data for schizophrenia and psychosocial therapy through new research methods by analyzing with big data method by proposing the results through visualization from seeking research trends of schizophrenia and psychosocial therapy through text mining and social network analysis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.