• Title/Summary/Keyword: LCP (liquid crystal polymer)

Search Result 28, Processing Time 0.024 seconds

Dielectric Properties of LCP and $BaTiO_3-SrTiO_3$ Composites for Embedded Matching Capacitors (내장형 capacitor를 위한 LCP와 $BaTiO_3-SrTiO_3$ 복합재의 유전특성)

  • Kim, Jin-Cheol;Yoon, Sang-Jun;Yoon, Keum-Hee;Oh, Jun-Rok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.60-60
    • /
    • 2008
  • We manufactured Liquid Crystal Polymer (LCP) and (1-x)$BaTiO_3-xSrTiO_3$(BST) ceramic composites and investigated dielectric properties to use as embedded capacitor in printed circuit boards and replace LTCC substrates. The dielectric properties of these composites are varied with volume fraction of BST and ratios of BT/ST. Dielectric constants are in the range of 3~28. In addition, we could get low TCC and High Q value that could not achieve in other ceramic-polymer composites. Especially, in composite with x=0.4 and 50vol% BST, the dieletric constant and Q-value are 27 and 300, respectively. And more TCC is -116~145ppm/$^{\circ}C$ in the temperature range of -55~$125^{\circ}C$. We think that this composites can be used high-Q substrate material like LTCC and embedded temperature compensation capacitor in printed circuit boards.

  • PDF

Design of Mobile Handset Chip Antenna with a Backside Ground for Wi-Fi Application (후면 그라운드를 이용한 휴대단말 Wi-Fi 칩 안테나 설계)

  • Oh, Sae-Won;Kim, Hyeong-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.5
    • /
    • pp.592-597
    • /
    • 2012
  • In this paper, a new small chip antenna for Wi-Fi application of the mobile handset is proposed. To miniaturize the chip antenna, the proposed antenna is designed to have the backside ground. The proposed antenna has S-shaped structure, which is designed on the LCP(Liquid Crystal Polymer) with ${\varepsilon}_r$=3.5. The size of the proposed antenna is $6.0mm{\times}2.5mm{\times}1.2mm$. The measured impedance bandwidth under a voltage standing wave ratio (VSWR) of 2 was 300 MHz(fractional bandwidth: 12.2 % 2.3~2.6 GHz), and peak gain is 1.42 dBi. The proposed antenna was designed using CST Microwave Studio commercial software tool. And the fabricated antenna is measured using a network analyzer and in anechoic chamber.

Synthesis and Properties of Combined Main-Chain/Side-Chain Liquid Crystalline Polymers with Cholesteryl and Azobenzene Groups

  • Gu, Su-Jin;Lee, Eung-Jae;Bang, Moon-Soo
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.14-21
    • /
    • 2019
  • Main-chain/side-chain liquid crystalline polymers (MCSCLCPs) combined with an azobenzene group and a cholesteryl group were synthesized to impart light and temperature sensitivity to the polymer. The polymers were designed with the azobenzene unit as the mesogenic group of the main-chain and various compositions of the azobenzene and cholesteryl units as the mesogenic group of the side-chain. The chemical structures and physical properties of the synthesized polymers were investigated by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, differential scanning calorimetry, thermogravimetric analysis, polarized optical microscopy, and ultraviolet-visible (UV-Vis) spectroscopy. All the MCSCLCPs were amorphous and exhibited enantiotropic liquid crystal phases; these polymers achieved the nematic phase with increasing content of the azobenzene group and exhibited the cholesteric phase with weak liquid crystallinity as the content of the cholesteryl group was increased. Furthermore, the polymers containing the azobenzene group showed photoisomerization when exposed to UV-Vis light, and the CP-A3C7 and CP-A5C5 polymers exhibited thermochromism in the temperature range of the liquid crystal phase.

Crystallization Behaviors of Liquid Crystalline Polymer/poly(ethylene terephthalate) blends (액정 고분자와 폴리(에틸렌 테레프탈레이트) 블렌드의 결정화 거동)

  • Bang Moon-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.559-566
    • /
    • 2006
  • The isothermal crystallization behavior of blends of poly(ethylene terephthalate) and liquid crystalline polymers(LCP) was studied. The Avrami analyses were applied to obtain the information on the crystal growth geometry and factors controlling the rate of crystallization. The crystallization kinetics for the blends followed the classical Avrami equation up to a high degree of crystallization regardless of crystallization temperature, The values of Avrami exponent, n, for PET in the blends were estimated to be around 2, which indicate that the polymer crystals grow into one-dimensional linear or fiber-like crystallization mode. The crystallization rate, as expected, decreases with increasing the crystallization temperature.

  • PDF

A Highly Efficient Organic Light-Emitting Diode with an Imprinted In-Cell Polarizer for Backlight Applications

  • Lee, Won-Suk;Choi, Won-Suk;Lim, Yong-Woon;Na, Yu-Jin;Lee, Sin-Doo
    • Journal of Information Display
    • /
    • v.9 no.4
    • /
    • pp.11-14
    • /
    • 2008
  • A highly efficient organic light-emitting diode (OLED) with an in-cell polarizer made of an imprinted liquid crystalline polymer (LCP) layer doped with dichroic dye molecules is presented. The in-cell polarizer was found to be capable of effectively polarizing the emission light of the OLED and of significantly improving the luminance through the periodic microstructures fabricated using an imprinting method. This type of OLED with an imprinted in-cell polarizer is useful for efficient light source applications in liquid crystal displays (LCDs).

On the Composites of Poly(ethylene terephthalate) with a Liquid Crystalline Polyester (액정 폴리에스테르와 폴리(에틸렌 테레프탈레이트)의 복합재료 연구)

  • Choi, Jae-Kon;Bang, Moon-Soo;Han, Chul
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.76-83
    • /
    • 1997
  • Blends of thermotropic liquid crystalline polymer(TLCP) with poly(ethylene terephthalate) (PET) were prepared by the coprecipitation from a common solvent. The blends were processed through a capillary die at $287^{\circ}C$ to produce a monofilament. Morphology and mechanical, thermal properties of blends and composites were examined by differential scanning calorimetry(DSC), tensile test, optical microscopy and scanning electron microscopy. Crystallization kinetics of the blends were investigated by the isothermal DSC method. The Avrami analyses were applied to obtain the information on the crystal growth geometry and factors controlling the rate of crystallization. In the blends, liquid crystalline phase did not reveal any significant macrophase separation and thermal degradation at the processing temperature. From scanning electron micrographs of cryogenic fracture surfaces of extruded fibers, the TLCP domains were found to be more or less finely dispersed with $0.1{\mu}m$ to $0.2{\mu}m$ in size. Interfacial adhesion between the TLCP and matrix polymer was excellent. Tensile strength and modulus of TLCP/PET in-situ fiber composites were enhanced with increasing draw ratio and LCP content.

  • PDF

Implementation of Capacitor and Inductor Applied LCP Substrate for 35-GHz frequency band (35 GHz 대역을 위한 LCP 기판 적용된 커패시터 및 인덕터 구현)

  • Lee, Jiyeon;Ryu, Jongin;Choi, Sehwan;Lee, Jaeyoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.67-75
    • /
    • 2020
  • In this paper, by applying LCP substrate, the capacitor and inductor are implemented with a variety of value that can be used in 35 GHz circuits. Depending on how to apply it to the circuit, it is required high value by designing the basic structures such as electrode capacitor and spiral inductor. However they are not available in high-frequency domain, because their SRF(Self-Resonant Frequency) is lower than the frequency of 35-GHz. By finding the limit, this paper devised classifying passive devices for the DC and the high-frequency domain. The basic structure is suitable for DC and microstrip λ/8 length stub structure can be used for high-frequency. The open and short stub structure operate as a capacitor and inductor respectively in the frequency of 35 GHz. If their impedance is known, it is possible to extract the value through the impedance-related equation. By producing with the permittivity 2.9 LCP substrate, the basic structure which are available in the DC constituted a library of capacitance of 1.12 to 13.9 pF and inductance of 0.96 to 4.69 nH, measured respectively. The stub structure available in the high-frequency domain were built libraries of capacitance of 0.07 to 2.88 pF and inductance of 0.34 to 1.27 nH, calculated respectively. The measurements have proven how to diversify value, so libraries can be built more variously. It is possible to integrate with the operation circuit of TRM(Transmit-Receive Module) for the frequency 35-GHz, it will be an alternative to the passive devices that can be properly utilized in the circuit.

Synthesis and Characterization of Polymers with Azobenzene and Hexamethylene Groups in Main Chain (주사슬에 아조벤젠기와 헥사메틸렌기를 갖는 고분자의 합성 및 특성)

  • Gu, Su-Jin;Lee, Eung-Jae;Bang, Moon-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.86-92
    • /
    • 2019
  • Polymers with various compositions of azobenzene and hexamethylene groups in the main chain were synthesized by a Schotten-Baumann reaction and their properties were investigated. The chemical structures and physical properties of the synthesized polymers were investigated by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, differential scanning calorimetry, thermogravimetric analysis, polarized optical microscopy, and x-ray diffraction. The polymers showed an inherent viscosity of 1.28-1.36 dl/g and were relatively insoluble in most organic solvents. The melt transition temperature increased rapidly with increasing number of azobenzene groups in the polymer. When the azobenzene monomer content was more than 50 mol%, no melting transition occurred below the decomposition temperature. Among the polymers with a melt transition temperature, the MP-A3C7 and MP-A5C5 polymers were liquid crystalline materials and exhibited a nematic phase with weak liquid crystallinity over a wide liquid crystal temperature range. This difference in the properties of the synthesized polymers is likely due to the changes in intermolecular forces resulting from the linearity and polarity of the trans-form of azobenzene.