A Highly Efficient Organic Light-Emitting Diode with an Imprinted In-Cell Polarizer for Backlight Applications

  • Lee, Won-Suk (School of Electrical Engineering, Seoul National University) ;
  • Choi, Won-Suk (School of Electrical Engineering, Seoul National University) ;
  • Lim, Yong-Woon (School of Electrical Engineering, Seoul National University) ;
  • Na, Yu-Jin (School of Electrical Engineering, Seoul National University) ;
  • Lee, Sin-Doo (School of Electrical Engineering, Seoul National University)
  • Published : 2008.12.30

Abstract

A highly efficient organic light-emitting diode (OLED) with an in-cell polarizer made of an imprinted liquid crystalline polymer (LCP) layer doped with dichroic dye molecules is presented. The in-cell polarizer was found to be capable of effectively polarizing the emission light of the OLED and of significantly improving the luminance through the periodic microstructures fabricated using an imprinting method. This type of OLED with an imprinted in-cell polarizer is useful for efficient light source applications in liquid crystal displays (LCDs).

Keywords

References

  1. C. W. Tang, and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987) https://doi.org/10.1063/1.98799
  2. M. Jandke, P. Strohriegl, J. Gmeiner, W. Brutting, and M. Schworer, Adv. Mater. 11, 1518 (1999) https://doi.org/10.1002/(SICI)1521-4095(199912)11:18<1518::AID-ADMA1518>3.0.CO;2-T
  3. A. Bolognesi, C. Botta, M. Martinelli, and W. Porzio, Org. Electron. 1, 27 (2000) https://doi.org/10.1016/S1566-1199(00)00005-7
  4. D. Sainova, A. Zen, H.-G. Nothofer, U. Asawapirom, U. Scherf, R. Hagen, T. Bieringer, S. Kostromine, and D. Neher, Adv. Funct. Mater. 12, 49 (2002) https://doi.org/10.1002/1616-3028(20020101)12:1<49::AID-ADFM49>3.0.CO;2-D
  5. M. Misaki, Y. Ueda, S. Nagamatsu, M. Chikamatsu, Y. Yoshida, N. Tanigaki, and K. Yase, Appl. Phys. Lett. 87, 243503 (2005) https://doi.org/10.1063/1.2142082
  6. M. Misaki, M. Chikamatsu, Y. Yoshida, R. Azumi, N. Tanigaki, and K. Yase, S. Yagamatsu, and Y. Ueda, Appl. Phys. Lett. 93, 023304 (2008) https://doi.org/10.1063/1.2959073
  7. S.-W. Tam-Chang, W. Seo, I. K. Iverson, and S. M. Casey, Angew. Chem. Int. Ed. 42, 897 (2003) https://doi.org/10.1002/anie.200390236
  8. T. Sergen, T. Schneider, J. Kelly, and O. D. Lavrentovich, Liquid Crystals 27, 567 (2000) https://doi.org/10.1080/026782900202390
  9. E. Peeters, J. Lub, J. A. M. Steenbakkers, and D. J. Broer, Adv. Mater. 18, 2412 (2006) https://doi.org/10.1002/adma.200600355
  10. K. Ichimura, M. Momose, K. Kudo, and H. Akiyama, Langmuir 11, 2341 (1995) https://doi.org/10.1021/la00007a003
  11. Y.-W. Lim, C,-H, Kwak, and S,-D. Lee, J. Nanosci. Nanotechnol. 8, 9 (2007)
  12. D. W. Berreman, Phys. Rev. Lett. 28, 1683 (1972) https://doi.org/10.1103/PhysRevLett.28.1683
  13. H. Yang, C.-K. Chao, M.-K. Wei, and C.-P. Lin, J. Micromech. Microeng. 14, 1197 (2004) https://doi.org/10.1088/0960-1317/14/8/012
  14. K. Ishihara, M. Fujita, I. Matsubara, T. Asano, S. Noda, H. Ohata, A. Hirasawa, H. Nakada, and N. Shimoji, Appl. Phys. Lett. 90, 111114 (2007) https://doi.org/10.1063/1.2713237
  15. Y. Sun, and S. R. Forrest, Nature Photonics 2, 483 (2008) https://doi.org/10.1038/nphoton.2008.132