• Title/Summary/Keyword: LCI

Search Result 105, Processing Time 0.024 seconds

Material Flow Analysis and its Implication for Sustainability Policy (물질흐름분석(MFA)의 의의와 정책적 함의)

  • Cho, Young-Tak;Choi, Jung-Su
    • Journal of Environmental Policy
    • /
    • v.5 no.2
    • /
    • pp.1-26
    • /
    • 2006
  • This paper reveals Material Flow Analysis(MFA) has the possibility of reconciling the two contending theoretical viewpoints(weak sustainability v.s. strong sustainability) and thereby makes the concept of sustainability useful at operational level. For this purpose, this paper shows that the theoretical logic of MFA can be applied from national level to product level (EW-MFA, PIOT/NAMEA, LCI), and investigates the meanings and policy implications of MFA at each level.

  • PDF

Railway industry and Life Cycle Assessment(LCA) (철도산업과 전과정평가(LCA))

  • Jeong In-Tae;Yang Yun-Hee;Lee Kun-Mo;Kim Yong-Gi
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.1028-1032
    • /
    • 2005
  • Life cycle assessment(LCA) has been developed from the concept of life cycle thinking. Life cycle thinking implies that everyone in the whole chain of a product's life cycle, from cradle to grave, has a responsibility and a role to play, taking into account all the relevant external effects. LCA is an analytical tool for identifying environmental loads and assessing the environmental impact in the whole chain of a product's life cycle. In Europe and Japan, LCA and ecodesign study for railway industry have been actively carried out recently. However, LCA for railway industry in domestic is still infant. LCA is standardized in International Organization of Standardization(ISO), base on the ISO 14040 standards, 307 life cycle inventory(LCI) database for infrastructure and base materials have been established in total since 1999. Some of LCI database can use in performing LCA for trains and railway infrastructure, but still not enough to derive accurate LCA result. Therefore, railway oriented LCA methodology and LCI DB are needed to be developed.

  • PDF

Modeling and Experiment of LCI system for Gas Turbine Synchronous Generator (가스터빈용 동기발전기를 위한 LCI 시스템 모델링 및 실험)

  • An, Hyunsung;Ryu, Hoseon;Kim, Kyung-seo;Cha, Hanju
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.267-268
    • /
    • 2014
  • 본 논문에서는 LCI (Load Commuted Inverter) 시스템의 구동원리와 제어방식에 대해서 서술하였으며, 알고리즘 검증을 위한 모델링을 매트랩/시뮬링크를 사용하여 진행하였으며, 5kW급 프로토타입을 통해 제어 알고리즘의 성능을 확인하였다. 시스템 속도에 따라 달리하는 구동방식인 강제전류 모드와 자연전류 모드는 동기발전기의 정격속도 10%인 180rpm에서 모드 전환이 이루어지며, 과도상태 및 정격속도까지 안정적인 동작을 확인하였다.

  • PDF

Estimation of Carbon Emission and Application of LCA (Life Cycle Assessment) from Rice (Oryza sativa L.) Production System (쌀의 생산과정에서 발생하는 탄소배출량 산정을 위한 전과정평가 적용)

  • So, Kyu-Ho;Park, Jung-Ah;Lee, Gil-Zae;Shim, Kyo-Moon;Ryu, Jong-Hee;Roh, Kee-An
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.716-721
    • /
    • 2010
  • LCA (Life Cycle Assessment) carried out to estimate carbon footprint and to establish of LCI (Life Cycle Inventory) database of rice production system. The results of collecting data for establishing LCI D/B showed that organic fertilizer and chemical fertilizer input to 4.29E-01 kg $kg^{-1}$ rice and 2.30E-01 kg $kg^{-1}$ rice for rice cultivation. It was the highest value among input for rice cultivation. And direct field emission was 3.23E-02 kg $kg^{-1}$ during rice cropping. The results of LCI analysis focussed on greenhouse gas (GHG) was showed that carbon footprint was 8.70E-01 kg $CO_2$-eq. $kg^{-1}$ rice. Especially for 80% of $CO_2$ in the GHG and 7.02E-01 kg of its $CO_2$-eq. $kg^{-1}$ rice. Of the GHG emission $CH_4$, and $N_2O$ were estimated to be 13% and 5%, respectively. With LCIA (Life Cycle Impact Assessment) for rice cultivation system, it was observed that fertilizer process might be contributed to approximately 80% of GWP (global warming potential).

Life Cycle Assessment (LCA) for Calculation of the Carbon Emission Amount of Organic Farming Material -With Emphasis on Hardwood Charcoal, Grass Liquid and Microbial Agents- (유기농자재의 탄소배출량 산정을 위한 전과정평가(LCA) -참숯, 목초액, 미생물제재를 중심으로-)

  • Yoon, Sung-Yee;Son, Bo-Hong
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.3
    • /
    • pp.297-311
    • /
    • 2012
  • Since 1997, Korean Ministry of Knowledge Economy and Ministry of Environment have established data on some 400 basic raw and subsidiary materials and process like energy, petro-chemical, steel, cement, glass, paper, construction materials, transportation, recycling and disposal etc by initiating establishment of LCI database. Regarding agriculture, Rural Development Administration has conducted establishment of LCI database for major farm products like rice, barley, beans, cabbage and radish etc from 2009, and released that they would establish LCI database for 50 items until 2020 later on. The domestic LCI database for seeds, seedling, agrochemical, inorganic fertilizer and organic fertilizer etc is only at initial stage of establishment, so overseas LCI databases are brought and being used. However, since the domestic and overseas natural environments differ, they fall behind in reliability. Therefore, this study has the purpose to select organic farming materials, survey the production process for various types of organic farming materials and establish LCI database for the effects of greenhouse gas emitted during the process in order to select carbon basic units for agricultural production system compliant in domestic situation instead of relying on overseas data and apply life cycle assessment of greenhouse gas emitted by each crop during the process. As for selecting methods, in this study organic farming materials were selected in the method of direct observation of material and bottom-up method a survey method with focus on the organic farming materials admitted into rice production. For the basic unit of carbon emission amount by the production of 1kg of organic farming material, the software PASS 4.1.1 developed by Korea Accreditation Board under Ministry of Knowledge Economy was used. The study had the goal to ultimately provide basic unit to calculate carbon emission amount in executing many institutions like goal management system and carbon performance display system etc in agricultural sector to be conducted later on. As a result, emission basic units per 1kg of production were calculated to be 0.0088kg-$CO_2$ for charcoal, 0.1319kg-$CO_2$ for grass liquid, and 0.2804kg-$CO_2$ for microbial agent.

A Study on Life-Cycle Environmental Impact of Synthetic Resin Formwork (합성수지 거푸집의 전과정 환경영향평가에 관한 연구)

  • Nam, Kyung-Yong;Yang, Keun-Hyeok;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.3
    • /
    • pp.245-252
    • /
    • 2020
  • Synthetic resin formwork is made of lightweight high-density polyethylene(HDPE). This study used a process flow chart that satisfies the system boundary (such as Cradle-to- Product shipmen ) required by ISO FDIS 13352 to evaluate the entire process of synthetic resin foam using. The entire life cycle inventory (LCI) database calculated from input energy sources, materials used, transportation methods, and manufacturing processes at the system boundary was analyzed. Based on the environmental impact assessment index methodology of the Ministry of Environment from the LCI data analysis of synthetic resin formwork, the environmental impact assessment was carried out through classification, normalization, characterization, and weighting process. The experimental results are as follows the amount of CO2 (carbon) emission considering the number of conversions was about 32% lower than that of the Euroform. This shows that the use of synthetic resin formwork reduces material production by half compared to Euroform and reduces CO2 (carbon) emissions.

Design Approach of Concrete Structures Considering the Targeted CO2 Reduction (목표 탄소배출량 저감을 고려한 콘크리트 구조물의 설계 절차)

  • Jung, Yeon-Back;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.115-121
    • /
    • 2015
  • The objective of this study is to present the design approach of low $CO_2$ concrete structures for reduction of $CO_2$ emissions. The design approach was implemented considering the system boundary for each processing presented in the ISO 13315-2. As for life-cycle inventory(LCI) for $CO_2$ assessment of concrete structures, data provided from domestic LCI DB was used. Based on the process presented in this study, case studies on the life-cycle $CO_2$ assessment of shear wall concrete structure was conducted. As substitution level of GGBS is 25%, the amount of $CO_2$ emissions and $CO_2$ uptake by concrete carbonation was decreased in the material, demolition and crushing, and transport phase. The amount of $CO_2$ emissions of column and total member was decreased by 26% and 22% respectively, compared to that of OPC.

A New Start-up Method for a Load Commutated Inverter for Large Synchronous Generator of Gas-Turbine

  • An, Hyunsung;Cha, Hanju
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.201-210
    • /
    • 2018
  • This paper proposes a new start-up method for a load commutated inverter (LCI) in a large synchronous gas-turbine generator. The initial rotor position for start-up torque is detected by the proposed initial angle detector, which consists of an integrator and a phase-locked loop. The initial rotor position is accurately detected within 150ms, and the angle difference between the real position and the detected position is less than 1%. The LCI system operates in two modes (forced commutation mode and natural commutation mode) according to operating speed range. The proposed controllers include a forced commutation controller for the low-speed range, a PI speed controller and a PI current controller, where the forced commutation controller is connected to the current controller in parallel. The current controller is modeled by Matlab/Simulink, where a six-pulse delay of the thyristor and a processing delay are considered by using a zero-order hold. The performance of the proposed start-up method is evaluated in Matlab/Psim at standstill and at low speed. To verify the feasibility of the method, a 5kVA LCI system prototype is implemented, and the proposed initial angle detector and the system performance are confirmed by experimental results from standstill to 900rpm.

Estimation of Greenhouse Gas Emissions of Complex Fertilizers Production System by Using Life Cycle Assessment (전과정평가를 활용한 복합비료 생산 시스템의 온실가스 배출량 평가)

  • Jung, Soon-Chul;Park, Jeong-A;Huh, Jin-Ho;So, Kyu-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.256-262
    • /
    • 2011
  • Currently among the several methods to estimate an environmental impact of products, Life Cycle Assessment (LCA) technique is mostly used. The Ministry of Environment has been performed the carbon footprint labelling to give the carbon record of product by using this method. But the calculation of carbon footprint in primary agricultural product which is raw material of the processed food cannot be made because there is lack of methodology and LCI DB at agriculture sector. Therefore, LCA carried out to estimate carbon footprint, and established LCI DB for complex fertilizers (21-17-17 1 kg, 17-21-17 1 kg, 15-15-15 1 kg, Unspecified 1 kg) in the production system. The result of LCI DB analysis focussed on the GHG, and it was observed that the values of carbon footprint were $2.42E+00kg\;CO_2-eq.kg^{-1}$ for 21-17-17, $2.10E+00kg\;CO_2-eq.kg^{-1}$ for 17-21-17, $2.23E+00kg\;CO_2-eq.kg^{-1}$ for 15-15-15 and $3.56E+00kg\;CO_2-eq.kg^{-1}$ for Unspecified. For the analysis of LCIA (Life Cycle Impact Assessment) on complex fertilizers in the production system, the carbon footprint from pre-manufacturing phase is contributed to 98.96%, 98.81%, 98.88% and 99.30% on each complex fertilizer with 21-17-17, 17-21-17, 15-15-15, and Unspecified, respectively. These results will be used in basic data for estimation of agricultural greenhouse gas emissions.

Estimation of Carbon Emission and Application of LCA (Life Cycle Assessment) from Barely (Hordeum vulgare L.) Production System (보리의 생산과정에서 발생하는 탄소배출량 산정 및 전과정평가 적용)

  • So, Kyu-Ho;Park, Jung-Ah;Lee, Gil-Zae;Ryu, Jong-Hee;Shim, Kyo-Moon;Roh, Kee-An
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.722-727
    • /
    • 2010
  • This study was conducted to estimate the carbon footprint and to establish the database of the LCI (Life Cycle Inventory) for barely cultivation system. Barley production system was separated into the naked barley, the hulled barley and the two-rowed barley according to type of barley species. Based on collecting the data for operating LCI, it was shown that input of fertilizer was the highest value of 9.52E-01 kg $kg^{-1}$ for two-rowed braley. For LCI analysis focussed on the greenhouse gas (GHG), it was observed that carbon footprint were 1.25E+00 kg $CO_2$-eq. $kg^{-1}$ naked braley, 1.09E+00 kg $CO_2$-eq. $kg^{-1}$ hulled braley and 1.71E+00 $CO_2$-eq. $kg^{-1}$ two-rowed barley; especially two-rowed barley cultivation system had highest emission value as 1.09E+00 kg $CO_2$ $kg^{-1}$ barley. It might be due to emit from mainly fertilizer production for barley cultivation. Also $N_2O$ was emitted at 7.55E-04 kg $N_2O\;kg^{-1}$ barley as highest value from hulled barley cultivation system because of high N fertilizer input. The result of life cycle impcat assessment (LCIA), it was observed that most of carbon emission from barely cultivation system was mainly attributed to fertilizer production and cropping unit. Characterization value of GWP was 1.25E+00 (naked barley), 1.09E+00 (hulled barley) and 1.71E+00 (two-rowed barely) kg $CO_2$-eq. $kg^{-1}$, respectively.