• Title/Summary/Keyword: LCD Projector

Search Result 24, Processing Time 0.021 seconds

Reserch and development of metal halide lamp for LCD projector back light (LCD PROJECTOR BACK LIGHT용 METAL HALIDE LAMP의 연구 및 개발)

  • 박창식;정의선;이승수
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.39-46
    • /
    • 1995
  • Metal halide pamp for LCD projector back light is high technologlcal product with its consumption increasing by 30% a year according to LCD merchandise and we are whollydepending on imprtation. At this time exper iment. we achleved those results as below. 1. Reallzation of domestic production of 150W metal halide lamp for LCD progector back light and electrical ballatst. 2. Possession of self-designing and manufacturing technology of submlnlature metal halide lamp. 3. Possession of deslgning technology of electrlcal ballast for metal hallde lamp.

  • PDF

Implementation of Spatial Light Modulator(SLM) using a Commercial LCD Beam Projector

  • Ko, Jung-Hwan;Lee, Jae-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.9
    • /
    • pp.1-10
    • /
    • 2006
  • In this paper, a new high resolution XGA-SLM is implemented through modification of a commercial TFT-LCD beam projector and its optical modulation characteristics as a spatial light modulator(SLM) is also analyzed. First, the optics module, projection lamp and fans are removed from a commercial beam projector and instead some electric circuits to compensate their removal are manufactured and then, by inserting them into the beam projector, a new XGA-SLM is finally implemented. Second, from some optical experimental results, this TFT-SLM is found to have a good optical linearity in amplitude and phase modulation characteristics as a function of the input gray levels. Especially, through implementation of a binary phase-type correlator such as BPEJTC by using the suggested TFT-LCD panel, the implemented SLM is proposed as a new relatively low-cost and high resolution SLM for optical information processing.

A New Configuration of LCD Projectors for Polarized Stereoscopic Projection with Improved Light Efficiency

  • Kim, Eun-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.205-210
    • /
    • 2005
  • A new configuration of LCD projectors for polarized stereoscopic projection having no light loss in the polarization process is suggested. In the proposed system, two polarizing filters that are employed in the conventional LCD polarized stereoscopic projection system causing additional light loss and image distortion are excluded by taking into account of polarization property of the LCD projector and image processing techniques. From some experimental results by using the Type-1 LCD projectors of NEC MT 1060R, light loss of the proposed system occurring in the polarization process is found to be zero and the resultant stereoscopic video image projected from this system is also found to be 213%, 75% and 300% brighter than those projected from the conventional Type-1 LCD projector-based, Type-2 LCD projector-based and Type-3 projector-based systems, respectively.

  • PDF

A Time-multiplexed 3d Display Using Steered Exit Pupils

  • Brar, Rajwinder Singh;Surman, Phil;Sexton, Ian;Hopf, Klaus
    • Journal of Information Display
    • /
    • v.11 no.2
    • /
    • pp.76-83
    • /
    • 2010
  • This paper presents the multi-user autostereoscopic 3D display system constructed and operated by the authors using the time-multiplexing approach. This prototype has three main advantages over the previous versions developed by the authors: its hardware was simplified as only one optical array is used to create viewing regions in space, a lenticular multiplexing screen is not necessary as images can be produced sequentially on a fast 120Hz LCD with full resolution, and the holographic projector was replaced with a high-frame-rate digital micromirror device (DMD) projector. The whole system in this prototype consists of four major parts: a 120Hz high-frame-rate DMD projector, a 49-element optical array, a 120Hz screen assembly, and a multi-user head tracker. The display images for the left/right eyes are produced alternatively on a 120Hz direct-view LCD and are synchronized with the output of the projector, which acts as a backlight of the LCD. The novel steering optics controlled by the multiuser head tracker system directs the projector output to regions referred to as exit pupils, which are located in the viewers’eyes. The display can be developed in the "hang-on-the-wall"form.

Implementation of the Optimized Phase-type High Resolution Spatial Light Modulator and Analysis of its Characteristics (최적화된 위상형 고해상 공간 광변조기의 구현 및 특성분석)

  • Ko, Jung-Hwan
    • 전자공학회논문지 IE
    • /
    • v.45 no.1
    • /
    • pp.7-14
    • /
    • 2008
  • In this paper, a new high resolution XGA-SLM is implemented through modification of a commercial TFT-LCD beam projector and its optical modulation characteristics as a spatial light modulator(SLM) is also analyzed. That is, the optics module, projection lamp and fans are removed from a commercial beam projector and instead, some electric circuits to compensate their removal are manufactured and then, by inserting them into the beam projector, a new XGA-SLM is finally implemented. From some characteristic experimental results of the implemented high resolution TFT-LCD SLM, the proposed TFT-SLM is found to have an good optical linearity in amplitude and phase modulation characteristics as a function of the input gray levels. Especially, through implementation of the suggested TFT-LCD panel, the implemented SLM is proposed as a new relatively low-cost and high resolution SLM for optical information processing.

An outlook of liquid crystal display technology (액정디스플레이 기술의 발전전망)

  • Jang, Jin
    • Electrical & Electronic Materials
    • /
    • v.9 no.7
    • /
    • pp.745-754
    • /
    • 1996
  • 이글에서는 다음의 내용을 다루었다. 1. LCD의 기능 성능 향상, (1) CRT와 TFT-LCD의 기능, 성능 비교, (2) TFT-LCD의 기능, 성능향상을 위한 과제 2. TFT-LCD의 가격 및 수급현황 3. Poly-Si TFT-LCD전망 4. 투사형 TFT-LCD 5. 반사형 LCD 6. 필림형 LCD 7. 고분자 분산형 액정(PDLC)

  • PDF

An Input/Output Technology for 3-Dimensional Moving Image Processing (3차원 동영상 정보처리용 영상 입출력 기술)

  • Son, Jung-Young;Chun, You-Seek
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.8
    • /
    • pp.1-11
    • /
    • 1998
  • One of the desired features for the realizations of high quality Information and Telecommunication services in future is "the Sensation of Reality". This will be achieved only with the visual communication based on the 3- dimensional (3-D) moving images. The main difficulties in realizing 3-D moving image communication are that there is no developed data transmission technology for the hugh amount of data involved in 3-D images and no established technologies for 3-D image recording and displaying in real time. The currently known stereoscopic imaging technologies can only present depth, no moving parallax, so they are not effective in creating the sensation of the reality without taking eye glasses. The more effective 3-D imaging technologies for achieving the sensation of reality are those based on the multiview 3-D images which provides the object image changes as the eyes move to different directions. In this paper, a multiview 3-D imaging system composed of 8 CCD cameras in a case, a RGB(Red, Green, Blue) beam projector, and a holographic screen is introduced. In this system, the 8 view images are recorded by the 8 CCD cameras and the images are transmitted to the beam projector in sequence by a signal converter. This signal converter converts each camera signal into 3 different color signals, i.e., RGB signals, combines each color signal from the 8 cameras into a serial signal train by multiplexing and drives the corresponding color channel of the beam projector to 480Hz frame rate. The beam projector projects images to the holographic screen through a LCD shutter. The LCD shutter consists of 8 LCD strips. The image of each LCD strip, created by the holographic screen, forms as sub-viewing zone. Since the ON period and sequence of the LCD strips are synchronized with those of the camera image sampling adn the beam projector image projection, the multiview 3-D moving images are viewed at the viewing zone.

  • PDF

A 3D Face Modeling Method Using Region Segmentation and Multiple light beams (지역 분할과 다중 라이트 빔을 이용한 3차원 얼굴 형상 모델링 기법)

  • Lee, Yo-Han;Cho, Joo-Hyun;Song, Tai-Kyong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.6
    • /
    • pp.70-81
    • /
    • 2001
  • This paper presents a 3D face modeling method using a CCD camera and a projector (LCD projector or Slide projector). The camera faces the human face and the projector casts white stripe patterns on the human face. The 3D shape of the face is extracted from spatial and temporal locations of the white stripe patterns on a series of image frames. The proposed method employs region segmentation and multi-beam techniques for efficient 3D modeling of hair region and faster 3D scanning respectively. In the proposed method, each image is segmented into face, hair, and shadow regions, which are independently processed to obtain the optimum results for each region. The multi-beam method, which uses a number of equally spaced stripe patterns, reduces the total number of image frames and consequently the overall data acquisition time. Light beam calibration is adopted for efficient light plane measurement, which is not influenced by the direction (vertical or horizontal) of the stripe patterns. Experimental results show that the proposed method provides a favorable 3D face modeling results, including the hair region.

  • PDF