• Title/Summary/Keyword: LCD Manufacturing

Search Result 287, Processing Time 0.032 seconds

Relationship Between Yield and Cost Considering Repair and Rework for LCD Manufacturing System (LCD생산시스템에서 Repair와 Rework을 고려한 수율과 원가 분석 모델)

  • Ha, Chunghun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.3
    • /
    • pp.364-372
    • /
    • 2007
  • The cost modeling of the LCD manufacturing system with the repair and the rework process is hard to achieve because of it's complex manufacturing process. The technical cost modeling divides each process separately and hierarchically, so it is very useful to calculate the total manufacturing cost of the complex manufacturing system. We applied the method to the complex LCD manufacturing system to obtain more accurate cost model. Yields are the most important control parameters in manufacturing. In this paper, we propose a yield based cost model for the LCD manufacturing system and reveal the relationship between manufacturing yield and cost. Through the model, we can estimate the manufacturing cost on the basis of yields that are control indicators of manufacturing. Some simulations are performed to observe the effects of the yield to the cost, and the results are coincide with the real situation. With the proposed model, we expect to develop some optimization problems for enlarging productivity in the LCD industry.

Data Communications and their Applications in the Automated TFT LCD Manufacturing System (TFT LCD 자동생산시스템에서 Data 통신 및 응용)

  • Jo, Min-Ho
    • IE interfaces
    • /
    • v.9 no.3
    • /
    • pp.225-235
    • /
    • 1996
  • The SECS Ⅰ and Ⅱ Protocol has been widely used for the TFT LCD and semiconductor industry. This paper shows how the SECS protocol is implemented for data communications between the Host (CAM) and the TFT LCD equipments. In addition, this study introduces a way to apply the SECS protocol to the manufacturing systems control. It provides better throughput in terms of production and faster control of the automated TFT LCD manufacturing system by way of shortcut and distribution of control and data communications. The SECS protocol is successfully used for the control of the real TFT LCD manufacturing system.

  • PDF

A Study on Optimization of Megasonic Cleaning Process for Manufacturing LCD

  • Kim, Young-Sook;Kim, Hie-Sik;Park, Gi-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.97.4-97
    • /
    • 2001
  • Recently, TFT LCD (thin film transistor liquid crystal display) manufacturing industry is more concerned with the ways of cleaning large TFT LCD´s with high pixed density than ever Ultrasonic cleaners with high frequencies like 1MHz (megasonic cleaners) are effective in removing very small particles without causing mechanical damage to the surface. In this study a megasonic cleaner for TFT LCD manufacturing process is developed and the performance is evaluated through experiments. The experimental results show that the developed magasonic cleaners is effective in removing very small particle from the LCD panel.

  • PDF

Types & Characteristics of Chemical Substances used in the LCD Panel Manufacturing Process (LCD 제조공정에서 사용되는 화학물질의 종류 및 특성)

  • Park, Seung-Hyun;Park, Hae Dong;Ro, Jiwon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.3
    • /
    • pp.310-321
    • /
    • 2019
  • Objectives: The purpose of this study was to investigate types and characteristics of chemical substances used in LCD(Liquid crystal display) panel manufacturing process. Methods: The LCD panel manufacturing process is divided into the fabrication(fab) process and module process. The use of chemical substances by process was investigated at four fab processes and two module processes at two domestic TFT-LCD(Thin film transistor-Liquid crystal display) panel manufacturing sites. Results: LCD panels are manufactured through various unit processes such as sputtering, chemical vapor deposition(CVD), etching, and photolithography, and a range of chemicals are used in each process. Metal target materials including copper, aluminum, and indium tin oxide are used in the sputtering process, and gaseous materials such as phosphine, silane, and chlorine are used in CVD and dry etching processes. Inorganic acids such as hydrofluoric acid, nitric acid and sulfuric acid are used in wet etching process, and photoresist and developer are used in photolithography process. Chemical substances for the alignment of liquid crystal, such as polyimides, liquid crystals, and sealants are used in a liquid crystal process. Adhesives and hardeners for adhesion of driver IC and printed circuit board(PCB) to the LCD panel are used in the module process. Conclusions: LCD panels are produced through dozens of unit processes using various types of chemical substances in clean room facilities. Hazardous substances such as organic solvents, reactive gases, irritants, and toxic substances are used in the manufacturing processes, but periodic workplace monitoring applies only to certain chemical substances by law. Therefore, efforts should be made to minimize worker exposure to chemical substances used in LCD panel manufacturing process.

Fabrication of an All-Layer-Printed TFT-LCD Device via Large-Area UV Imprinting Lithography

  • Lee, Seung-Jun;Park, Dae-Jin;Bae, Joo-Han;Lee, Sung-Hee;Kim, Jang-Kyum;Kim, Kyu-Young;Bae, Jung-Mok;Kim, Bo-Sung;Kim, Soon-Kwon;Lee, Su-Kwon;Kwon, Sin;Seo, Jung-Woo;Kim, Ki-Hyun;Cho, Jung-Wok;Chang, Jae-Hyuk
    • Journal of Information Display
    • /
    • v.11 no.2
    • /
    • pp.49-51
    • /
    • 2010
  • Nanoimprint lithography (NIL) using ultraviolet (UV) rays is a technique in which unconventional lithographic patterns are formed on a substrate by curing a suitable liquid resist in contact with a transparent patterned mold, then releasing the freshly patterned material. Here, various solutions are introduced to achieve sufficient overlay accuracy and to overcome the technical challenges in resist patterning via UV imprinting. Moreover, resist patterning of all the layers in TFT and of the BM layer in CF was carried out using UV imprinting lithography to come up with a 12.1-inch TFT-LCD panel with a resolution of $1280{\times}800$ lines (125 ppi).

Development of a Thin Glass Vibration Measuring System for Productivity Improvement of LCD Manufacturing Line (LCD 생산라인의 생산성 향상을 위한 초박형 유리진동 계측 시스템의 개발)

  • Oh, Young-Kyo;Lee, Jung-Uk;Sun, Ju-Young;Kwack, Jeong-Seok;Won, Moon-Cheol;Lee, Hyun-Yup
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.336-342
    • /
    • 2011
  • Recently, the LCD manufacturing industries try to maximize the productivity of LCD panels due to sharp increase in the market need of LCD display. Usually, the increase in manufacturing speed induces additional vibration of glasses and manufacturing machineries. This kind of vibration can induce bad effects on the manufacturing accuracy, and even can damage the glasses. The vibration signal of glass itself is very useful to predict the allowable maximum level of manufacturing speed. Therefore, it is necessary to measure the vibration of the glass itself and a very thin vibration measurement system attachable on the glass is needed. Since in some processes the glasses need to go through very thin gaps such as 2.5mm, We develop a glass vibration measurement system with the thickness of 1.3mm. The system measures the glass vibration using MEMS type accelerometers and store vibration data in a Nand-Flash memory. The performance of the develop system has been verified on a real LCD manufacturing line and the accuracy of vibration measurement is comparable with that of an accurate commercial vibration measurement system.

High Precision Path Generation of an LCD Glass-Handling Robot

  • Cho, Phil-Joo;Kim, Hyo-Gyu;Kim, Dong-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2311-2318
    • /
    • 2005
  • Progress in the LCD industries has been very rapid. Therefore, their manufacturing lines require larger LCD glass-handling robots and more precise path control of the robots. In this paper, we present two practical advanced algorithms for high-precision path generation of an LCD glass-handling robot. One is high-precision path interpolation for continuous motion, which connects several single motions and is a reliable solution for a short robot cycle time. We demonstrate that the proposed algorithm can reduce path error by approximately 91% compared with existing algorithms without increasing cycle time. The second is real-time static deflection compensation, which can optimally compensate the static deflection of the handling robot without any additional sensors, measurement instruments or mechanical axes. This reduces vertical path error to approximately 60% of the existing system error. All of these algorithms have been commercialized and applied to a seventh-generation LCD glass-handling robot.

  • PDF

Effect of Spin Coating Speed on Characteristics of Polyimide Alignment Layer for Liquid Crystal Display (스핀 코팅 공정에 따른 액정디스플레이용 폴리이미드 배향막 특성 분석)

  • Kim, Jin-Ah;Choi, Se-Hoon;Park, Hong-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.58-65
    • /
    • 2022
  • The field of liquid crystal display (LCD) is constantly in the spotlight and the process of depositing an alignment layer in the LCD manufacturing process is very important to obtain excellent performance such as low-power driving and high-speed response to improve LCD performance. Therefore, research on liquid crystal (LC) alignment is being actively conducted. When manufacturing LCD, it is necessary to consider the effect of the alignment layer thickness as one of the factors affecting various LCD performances. In addition, previous studies confirmed the LC alignment characteristics correlate with the rotation speed in the spin coating process. Therefore, the electro-optical properties of the LCD were investigated by manufacturing a polyimide alignment layer by varying the rotation speed in the spin coating process in this study. It was confirmed that the thickness of the polyimide alignment layer was controlled according to the spin coating conditions. The average transmittances of anti-parallel LC cells at the spin coating speed of 2,500 rpm and 3,000 rpm are about 60%, which indicates that the LC cell has relatively higher performance. At the spin coating speed of 3,000 rpm, the voltage-transmittance curve of twisted nematic (TN) LC cell was below 1.5 V, which means that the TN LC cell operated at a low power. In addition, high-speed operating characteristics were confirmed with a response time of less than 30 ms. From these derived data, we confirmed that the ideal spin coating speed is 3,000 rpm. And these results provide an optimized polyimide alignment layer process when considering enhanced future LCD manufacturing.

Timed Petri-nets Modeling and Performance Evaluation of Modular Cell TFT-LCD Manufacturing System (모듈러 셀 TFT-LCD 제조시스템의 시간 페트리네트 모델링과 성능평가)

  • Lee, Sang-Moon;Jang, Seok-Ho;Kang, Sin-Jun;Woo, Kwang-Bang
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1303-1310
    • /
    • 1999
  • In this paper, the Timed Petri-Nets(TPN) modeling of Modular Cell Manufacturing Systems(MCMS) was investigated to overcome the limit of batch mode operation, which has been one of the most popular manufacturing types to produce an extensive industrial output and to be able to adopt to suitable and quickly changing manufacturing environments. A model of the MCMS was developed in reference to the actual TFT-LCD manufacturing system. TFT-LCD manufacturing system is not mass-productive in batch mode, but it operates in the form of MCMS which consists of a sequence of several cells with four processes of operation, including those of color filter(C/F), TFT, cell, and module. The cell process is further regrouped in those of Front-End and Back-End. For the Back-End cell process, it is reconstructed into a virtual model, consisting of three cells. The TPN modeling encompasses those properties, such as states and operations of machines, the number of buffers, and the processing time. The performance of the modeling was further examined in terms of scheduling system. The productivity in each cells was examined with respect to the change of failure rate of the cell machines and Automatic Guided Vehicles(AGV) using simulation by TPN.

  • PDF

Effective Construction Method of Defect Size Distribution Using AOI Data: Application for Semiconductor and LCD Manufacturing (AOI 데이터를 이용한 효과적인 Defect Size Distribution 구축방법: 반도체와 LCD생산 응용)

  • Ha, Chung-Hun
    • IE interfaces
    • /
    • v.21 no.2
    • /
    • pp.151-160
    • /
    • 2008
  • Defect size distribution is a probability density function for the defects that occur on wafers or glasses during semiconductor/LCD fabrication. It is one of the most important information to estimate manufacturing yield using well-known statistical estimation methods. The defects are detected by automatic optical inspection (AOI) facilities. However, the data that is provided from AOI is not accurate due to resolution of AOI and its defect detection mechanism. It causes distortion of defect size distribution and results in wrong estimation of the manufacturing yield. In this paper, I suggest a size conversion method and a maximum likelihood estimator to overcome the vague defect size information of AOI. The methods are verified by the Monte Carlo simulation that is constructed as similar as real situation.