• 제목/요약/키워드: LC-NMR

검색결과 117건 처리시간 0.029초

Identification, Fermentation, and Bioactivity Against Xanthomonas oryzae of Antimicrobial Metabolites Isolated from Phomopsis longicolla S1B4

  • Lim, Chae-Sung;Kim, Ji-Young;Choi, Jung-Nam;Ponnusamy, Kannan;Jeon, Yul-Taek;Kim, Soo-Un;Kim, Jeong-Gu;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권3호
    • /
    • pp.494-500
    • /
    • 2010
  • Bacterial blight, an important and potentially destructive bacterial disease in rice, is caused by Xanthomonas oryzae. Recently, this organism has developed resistance to available antibiotics, prompting scientists to find a suitable alternative. This study focused on secondary metabolites of Phomopsis longicolla to target X. oryzae. Five bioactive compounds were isolated by activity-guided fractionation from ethyl acetate extracts of mycelia and were identified by LC/MS and NMR spectroscopy as dicerandrol A, dicerandrol B, dicerandrol C, deacetylphomoxanthone B, and fusaristatin A. This is the first time fusaristatin A has been isolated from Phomopsis sp. Deacetylphomoxanthone B showed a higher antibacterial effect against X. oryzae KACC 10331 than the positive control (2,4-diacetyphloroglucinol). Dicerandrol A also showed high antimicrobial activity against Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis) and yeast (Candida albicans). In addition, high production yields of these compounds were obtained at the stationary and death phases.

The Isolation and Antioxidative Effects of Vitexin from Acer palmatum

  • Kim Jin Hwa;Lee Bum Chun;Kim Jin Hui;Sim Gwan Sub;Lee Dong Hwan;Lee Kyung Eun;Yun Yeo Pyo;Pyo Hyeong Bae
    • Archives of Pharmacal Research
    • /
    • 제28권2호
    • /
    • pp.195-202
    • /
    • 2005
  • Free radicals and reactive oxygen species (ROS) caused by UV exposure or other environmental factors are critical players in cellular damage and aging. In order to develop a new antiphotoaging agent, this work focused on the antioxidant effects of the extract of tinged autumnal leaves of Acer palmatum. One compound was isolated from an ethyl acetate soluble fraction of the A. palmatum extract using silica gel column chromatography. The chemical structure was identified as apigenin-8-C-beta-D-glucopyranoside, more commonly known as vitexin, by spectral analysis including LC-MS, FT-IR, UV, $^{1}H-$, and $^{13}C-NMR$. The biological activities of vitexin were investigated for the potential application of its anti-aging effects in the cosmetic field. Vitexin inhibited superoxide radicals by about $70\%$ at a concentration of $100\;{\mu}g/mL$ and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals by about $60\%$ at a concentration of $100\;{\mu}g/mL$. Intracellular ROS scavenging activity was indicated by increases in dichlorofluorescein (DCF) fluorescence upon exposure to UVB $20\;mJ/cm^2$ in cultured human dermal fibroblasts (HDFs) after the treatment of vitexin. The results show that oxidation of 5-(6-)chloromethyl-2',7'-dichlo-rodihydrofluorescein diacetate ($CM-H_{2}DCFDA$) is inhibited by vitexin effectively and that vitexin has a potent free radical scavenging activity in UVB-irradiated HDFs. In ROS imaging using a confocal microscope we visualized DCF fluorescence in HDFs directly. In conclusion, our findings suggest that vitexin can be effectively used for the prevention of UV-induced adverse skin reactions such as free radical production and skin cell damage.

Enzymatic Synthesis and Characterization of Galactosyl Trehalose Trisaccharides

  • Kim, Bong-Gwan;Lee, Kyung-Ju;Han, Nam-Soo;Park, Kwan-Hwa;Lee, Soo-Bok
    • Food Science and Biotechnology
    • /
    • 제16권1호
    • /
    • pp.127-132
    • /
    • 2007
  • [ ${\alpha},\;{\alpha}$ ]-Trehalose was efficiently modified by a transgalactosylation reaction of Escherichia coli ${\beta}-galactosidase$ using lactose as a donor to yield two galactosyl trehalose trisaccharides. The reaction products of trehalose by the enzyme were observed by thin layer chromatography (TLC) and high performance anion exchange chromatography (HPAEC) and were purified by BioGel P2 gel permeation chromatography and recycling preparative HPLC. Liquid chromatography-mass spectrometry (LC-MS) and ^{13}C$ nuclear magnetic resonance (NMR) analyses revealed that the structures of the main products were $6^2-{\beta}-D-galactosyl$ trehalose (1) and $4^2-{\beta}-D-galactosyl$ trehalose (2). A reaction of 30%(w/v) trehalose and 15%(w/v) lactose at pH 7.5 and $45^{\circ}C$ resulted in a total yield of approximately 27-30% based on the amount of trehalose used. The galactosyl trehalose products were not hydrolyzed by trehalose. In addition the mixture of transfer products (9:1 ratio of 1 to 2) showed higher thermal stability than glucose, lactose, and maltose, but less than trehalose, against heat treatment over $100^{\circ}C$ at pH 4 and 7. It also exhibited better thermal stability than sucrose at pH 4 alone.

Chemical Constituents of the Culture Broth of Panus rudis

  • Song, Ja-Gyeong;Ha, Lee Su;Ki, Dae-Won;Choi, Dae-Cheol;Lee, In-Kyoung;Yun, Bong-Sik
    • Mycobiology
    • /
    • 제49권6호
    • /
    • pp.604-606
    • /
    • 2021
  • In our ongoing search for new secondary metabolites from fungal strains, one novel compound (1) and nine known compounds (2-10) were isolated from the EtOAc-soluble layer of the culture broth of Panus rudis. The culture broth of P. rudis was extracted in acetone and fractionated by solvent partition; column chromatography using silica gel, Sephadex LH-20, and Sephadex G-10; MPLC; and HPLC. The structures of isolated compounds were elucidated by one- and two-dimensional NMR and LC-ESI-mass measurements. One new compound, panepoxydiol (1), and nine known compounds, (E)-3-(3-hydroxy-3-methylbut-1-en-1-yl)-7-oxabicyclo[4.1.0]hept-3-ene-2,5-diol (2), isopanepoxydone (3), neopanepoxydone (4), panepoxydone (5), panepophenanthrin (6), 4-hydroxy-2,2-dimethyl-6-methoxychromane (7), 6-hydroxy-2,2-dimethyl-3-chromen (8), 2,2-dimethyl-6-methoxychroman-4-one (9), 3,4-dihydroxy-2,2-dimethyl-6-methoxychromane (10), were isolated from the culture broth of P. rudis. This is the first report of isolation of a new compound panepoxydiol (1) and nine other chemical constituents (2-5, 7-10) from the culture broth of P. rudis.

송라 추출물의 세포 수준에서 항노화 및 모유두세포 활성화 효과 (In Vitro Anti-aging and Hair Follicle Dermal Papilla Cells Activation Effects of Usnea diffracta Vain Extract)

  • 김민정;최원영;심현우;신은진;이정노;박성민;유화선
    • 대한화장품학회지
    • /
    • 제50권1호
    • /
    • pp.37-48
    • /
    • 2024
  • 송라(Usnea diffracta Vain.)는 송라속(Usnea)에 속하는 지의류 중 하나이며, 이전 연구에서 항산화, 항균, 항염, 항종양 및 심혈관 보호 등의 약리학적 활성이 보고되어 있으나 피부 및 모발에서의 효능은 잘 알려져 있지 않다. 따라서 본 연구에서는 세포 수준에서 송라 추출물(UDE)의 항노화 및 모유두세포 증식에 대한 효과를 검증하였다. 실험 결과, 송라 추출물은 인간 섬유아세포에서 UVA에 의해 증가된 MMP-1의 발현 및 상위기전인 MAPKs (ERK, p38, JNK)와 AP-1 (c-Fos, c-Jun)의 활성을 유의적으로 감소하는 것을 확인하였다. 또한, 송라 추출물은 인간 모유두세포의 증식을 유의하게 증가시켰으며, 모발 성장인자인 VEGF 및 KGF의 mRNA 발현을 유의하게 증가시켰다. 이로 인하여, 모발 증식 및 성장인자의 발현에 관여하는 ERK/CREB의 인산화를 농도 의존적으로 증가시켰다. 송라 추출물의 주성분 확인을 위해 송라 추출물을 농축 후 Prep-LC를 이용하여 main peak로 나타난 분획을 분리 정제하였고, NMR 및 Mess 분석을 통해 diffractaic acid로 동정하였다. Diffractaic acid는 인간 섬유아세포에서 UVA에 의해 증가된 MMP-1의 발현을 유의적으로 감소시켰으며, 인간 모유두세포의 증식을 농도 의존적으로 증가시켰다. 이를 통해 송라 추출물은 항노화 및 모유두세포 활성 증가 효능을 갖는 화장품 천연소재로서의 활용 가능성을 입증하였다.

독활(Aralia cordata Thunb) 추출물의 Nitric Oxide Synthesis 저해효과 (Inhibitory Effects of Aralia cordata Thunb Extracts on Nitric Oxide Synthesis in RAW 264.7 Macrophage Cells)

  • 강창호;구자룡;소재성
    • 한국식품과학회지
    • /
    • 제44권5호
    • /
    • pp.621-627
    • /
    • 2012
  • 항염증효과가 있는 기능성 식품 및 의약품 소재의 개발을 위하여 천연 식물 자원으로부터 NOS 저해 활성 물질을 분리하고 그 이화학적인 특성에 대해 알아보기 위해 항염증 효과가 있다고 알려져 있는 58가지의 생약재에서 NO 저해효과를 확인해 본 결과 독활에서 80% 이상의 높은 저해활성을 가진 것을 알 수 있었다. 독활 생약재 에탄올 추출물에서 n-hexane, chloroform, ethyl acetate, n-butanol, water 순으로 용매 분획을 실시한 후 NO 생성 저해 활성을 측정한 결과, chloroform 분획에서 가장 높은 저해 활성을 보여 최종 분리 시료로 선정하였으며, open column chromatography(silica gel, $C_{18}$)를 이용하여 최종적인 활성 물질(AC8-MV)을 분리할 수 있었다. 분리한 활성 물질(AC8-MV)의 순도를 확인하기 위하여 analytical HPLC와 LC-ESI-mass spectrum를 분석한 결과 순수한 단일 물질로 분리 되었음을 확인할 수 있었으며, 차후 nuclear magnetic resonance spectrometer(NMR)를 통해 구조분석을 실시할 것이다. 또한 AC8-MV와 NO저해효과가 유의적으로 차이가 없던 AC8-MVI 활성물질에 대한 순도 및 구조분석을 연구할 것이다. 이를 통해 독활로부터 분리한 활성물질(AC8-MV)이 NO inhibitor 로서 일반 항염증 약물 및 기능성 식품 소재로 실용화될 수 있는 가능성을 시사하였다.

Brief Introduction of Research Progresses in Control and Biocontrol of Clubroot Disease in China

  • He, Yueqiu;Wu, Yixin;He, Pengfei;Li, Xinyu
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2015년도 춘계학술대회 및 임시총회
    • /
    • pp.45-46
    • /
    • 2015
  • Clubroot disease of crucifers has occurred since 1957. It has spread to the whole China, especially in the southwest and nourtheast where it causes 30-80% loss in some fields. The disease has being expanded in the recent years as seeds are imported and the floating seedling system practices. For its effective control, the Ministry of Agriculture of China set up a program in 2010 and a research team led by Dr. Yueqiu HE, Yunnan Agricultural University. The team includes 20 main reseachers of 11 universities and 5 institutions. After 5 years, the team has made a lot of progresses in disease occurrence regulation, resources collection, resistance identification and breeding, biological agent exploration, formulation, chemicals evaluation, and control strategy. About 1200 collections of local and commercial crucifers were identified in the field and by artificiall inoculation in the laboratories, 10 resistant cultivars were breeded including 7 Chinese cabbages and 3 cabbages. More than 800 antagostic strains were isolated including bacteria, stretomyces and fungi. Around 100 chemicals were evaluated in the field and greenhouse based on its control effect, among them, 6 showed high control effect, especially fluazinam and cyazofamid could control about 80% the disease. However, fluzinam has negative effect on soil microbes. Clubroot disease could not be controlled by bioagents and chemicals once when the pathogen Plasmodiophora brassicae infected its hosts and set up the parasitic relationship. We found the earlier the pathogent infected its host, the severer the disease was. Therefore, early control was the most effective. For Chinese cabbage, all controlling measures should be taken in the early 30 days because the new infection could not cause severe symptom after 30 days of seeding. For example, a biocontrol agent, Bacillus subtilis Strain XF-1 could control the disease 70%-85% averagely when it mixed with seedling substrate and was drenching 3 times after transplanting, i.e. immediately, 7 days, 14 days. XF-1 has been deeply researched in control mechanisms, its genome, and development and application of biocontrol formulate. It could produce antagonistic protein, enzyme, antibiotics and IAA, which promoted rhizogenesis and growth. Its The genome was sequenced by Illumina/Solexa Genome Analyzer to assembled into 20 scaffolds then the gaps between scaffolds were filled by long fragment PCR amplification to obtain complet genmone with 4,061,186 bp in size. The whole genome was found to have 43.8% GC, 108 tandem repeats with an average of 2.65 copies and 84 transposons. The CDSs were predicted as 3,853 in which 112 CDSs were predicted to secondary metabolite biosynthesis, transport and catabolism. Among those, five NRPS/PKS giant gene clusters being responsible for the biosynthesis of polyketide (pksABCDEFHJLMNRS in size 72.9 kb), surfactin(srfABCD, 26.148 kb, bacilysin(bacABCDE 5.903 kb), bacillibactin(dhbABCEF, 11.774 kb) and fengycin(ppsABCDE, 37.799 kb) have high homolgous to fuction confirmed biosynthesis gene in other strain. Moreover, there are many of key regulatory genes for secondary metabolites from XF-1, such as comABPQKX Z, degQ, sfp, yczE, degU, ycxABCD and ywfG. were also predicted. Therefore, XF-1 has potential of biosynthesis for secondary metabolites surfactin, fengycin, bacillibactin, bacilysin and Bacillaene. Thirty two compounds were detected from cell extracts of XF-1 by MALDI-TOF-MS, including one Macrolactin (m/z 441.06), two fusaricidin (m/z 850.493 and 968.515), one circulocin (m/z 852.509), nine surfactin (m/z 1044.656~1102.652), five iturin (m/z 1096.631~1150.57) and forty fengycin (m/z 1449.79~1543.805). The top three compositions types (contening 56.67% of total extract) are surfactin, iturin and fengycin, in which the most abundant is the surfactin type composition 30.37% of total extract and in second place is the fengycin with 23.28% content with rich diversity of chemical structure, and the smallest one is the iturin with 3.02% content. Moreover, the same main compositions were detected in Bacillus sp.355 which is also a good effects biocontol bacterial for controlling the clubroot of crucifer. Wherefore those compounds surfactin, iturin and fengycin maybe the main active compositions of XF-1 against P. brassicae. Twenty one fengycin type compounds were evaluate by LC-ESI-MS/MS with antifungal activities, including fengycin A $C_{16{\sim}C19}$, fengycin B $C_{14{\sim}C17}$, fengycin C $C_{15{\sim}C18}$, fengycin D $C_{15{\sim}C18}$ and fengycin S $C_{15{\sim}C18}$. Furthermore, one novel compound was identified as Dehydroxyfengycin $C_{17}$ according its MS, 1D and 2D NMR spectral data, which molecular weight is 1488.8480 Da and formula $C_{75}H_{116}N_{12}O_{19}$. The fengycin type compounds (FTCPs $250{\mu}g/mL$) were used to treat the resting spores of P. brassicae ($10^7/mL$) by detecting leakage of the cytoplasm components and cell destruction. After 12 h treatment, the absorbencies at 260 nm (A260) and at 280 nm (A280) increased gradually to approaching the maximum of absorbance, accompanying the collapse of P. brassicae resting spores, and nearly no complete cells were observed at 24 h treatment. The results suggested that the cells could be lyzed by the FTCPs of XF-1, and the diversity of FTCPs was mainly attributed to a mechanism of clubroot disease biocontrol. In the five selected medium MOLP, PSA, LB, Landy and LD, the most suitable for growth of strain medium is MOLP, and the least for strains longevity is the Landy sucrose medium. However, the lipopeptide highest yield is in Landy sucrose medium. The lipopeptides in five medium were analyzed with HPLC, and the results showed that lipopeptides component were same, while their contents from B. subtilis XF-1 fermented in five medium were different. We found that it is the lipopeptides content but ingredients of XF-1 could be impacted by medium and lacking of nutrition seems promoting lipopeptides secretion from XF-1. The volatile components with inhibition fungal Cylindrocarpon spp. activity which were collect in sealed vesel were detected with metheds of HS-SPME-GC-MS in eight biocontrol Bacillus species and four positive mutant strains of XF-1 mutagenized with chemical mutagens, respectively. They have same main volatile components including pyrazine, aldehydes, oxazolidinone and sulfide which are composed of 91.62% in XF-1, in which, the most abundant is the pyrazine type composition with 47.03%, and in second place is the aldehydes with 23.84%, and the third place is oxazolidinone with 15.68%, and the smallest ones is the sulfide with 5.07%.

  • PDF