• Title/Summary/Keyword: LC-MS-MS

Search Result 1,313, Processing Time 0.034 seconds

Determination of streptomycin in kiwifruit samples using LC-ESI-MS/MS (LC-ESI-MS/MS를 이용한 키위 중 streptomycin 분석)

  • Do, Jung-Ah;Lee, Mi-Young;Cho, Yoon-Jae;Chang, Moon-Ik;Hong, Jin-Hwan;Oh, Jae-Ho
    • Analytical Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.299-307
    • /
    • 2015
  • In May 2012, a safety hazard issue arose because some kiwifruit growers in New Zealand had sprayed streptomycin to prevent kiwifruit canker. Therefore, for food safety management, analytical methods to determine streptomycin residues in kiwifruits are required. We developed an analytical method to determine streptomycin residues in kiwifruit samples using liquid chromatograph tandem mass spectrometer (LC-ESI-MS/MS). Streptomycin residues in samples were extracted using 1% formic acid in methanol, centrifugation for 10 min, and subsequent supernatant filtration. Purified samples were subjected to LC-ESI-MS/MS to confirm presence of and quantify streptomycin residues. Average streptomycin recoveries (6 replicates each sample) were in the range of 94.8%-110.6% with relative standard deviations of <10%. The linearity of the concentration range of 0.01-5.0 mg/kg using a matrix-matched calibration gave R2 = 0.9995. The limit of quantification (LOQ) was 0.01 mg/kg. Results showed that our analytical method is rapid, simple, and sensitive, with easy sample preparation.

Ultra-fast Generic LC-MS/MS Method for High-Throughput Quantification in Drug Discovery

  • Kim, So-Hee;Yoo, Hye Hyun;Cha, Eun-Ju;Jeong, Eun Sook;Kim, Ho Jun;Kim, Dong Hyun;Lee, Jaeick
    • Mass Spectrometry Letters
    • /
    • v.4 no.3
    • /
    • pp.47-50
    • /
    • 2013
  • An ultra-fast generic LC-MS/MS method was developed for high-throughput quantification of discovery pharmacokinetic (PK) samples and its reliability was verified. The method involves a simple protein precipitation for sample preparation and the analysis by ultra-fast generic LC-MS/MS with the ballistic gradient program and selected reaction monitoring (SRM) mode. Approximately 290 new chemical entities (NCEs) (over 10,000 samples) from 5 therapeutic programs were analyzed. The calibration curves showed good linearity in the concentration range of 1, 2 or 5 to 2000 ng/mL. No significant ion suppression was observed in the elution region of all the NCEs. When approximately 300 plasma samples were continuously analyzed, the peak area of internal standard was constant and reproducible. In the repeated analysis of samples, the plasma concentrations and the area under the curve (AUC) were consistent with the results from the first analysis. These results showed that the present ultra-fast generic LC-MS/MS method is reliable in terms of selectivity, sensitivity, and reproducibility and could be useful for high-throughput quantification and other bioanalysis in drug discovery.

Verification of Analytical Method of Azaspiracid Toxins in Shellfish and Tunicates by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS (Liquid Chromatography-Tandem Mass Spectrometry)를 이용한 패류 및 피낭류 중 아자스필산 분석법의 유효성 검증)

  • Cho, Sung Rae;Jeong, Sang Hyeon;Park, Kunbawui;Yoon, Minchul;Kim, Dong Wook;Son, Kwang Tae;Ha, Kwang Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.4
    • /
    • pp.404-410
    • /
    • 2021
  • Although, mouse bioassay for the monitoring of azaspiracids (AZAs) toxins in shellfish has been used previously, the reported method has low sensitivity and it is time-consuming. Recently, there is an interest in the quantitative analysis of AZAs using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The purpose of this study is to verify the simultaneous analysis of AZAs in shellfish and tunicate in Korea using LC-MS/MS. To validate the method, linearity, limit of detection (LOD), limit of quantification (LOQ), precision, accuracy, and repeatability were determined. All standard compounds were analyzed within 7 min. The correlation coefficients (R2) of the standard solution was higher than 0.9995 (within the range of 0.8-10.0 ㎍/L). The LODs and LOQs of AZAs in shellfish were 0.08-0.16 ㎍/kg and 0.23-0.50 ㎍/kg, respectively. The accuracy and precision of the method for determining AZAs in shellfish were 87.1-93.0% and 1.23-4.91%, respectively. Consequently, the verified LC-MS/MS method is suitable to analyze AZAs in shellfish and tunicates in Korea.

Studies on mycotoxins using LC-MS/MS for the forage produced in Incheon

  • Ra, Do Kyung;Choi, Jae Yeon;Lee, Ju Ho;Nam, Ji Hyun;Lee, Jeoung Gu;Lee, Sung Mo
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.3
    • /
    • pp.127-133
    • /
    • 2019
  • The purpose of this study was to investigate the contamination level of representative mycotoxins that have adverse effects on livestock by using LC-MS/MS method and to utilize the results as basic data for the establishment of quality control system for feed, and to provide information on production and storage. A total of nine mycotoxins, including aflatoxin $B_1$, aflatoxin $B_2$, aflatoxin $G_1$, aflatoxin $G_2$, ochratoxin A, fumonisin $B_1$, fumonisin $B_2$, deoxynivalenol (DON), zearalenone (ZEN) were simultaneously analyzed in LC-MS/MS under ESI positive mode. Fumonisin $B_1$ and fumonisin $B_2$ were detected from 3 cases of 75 forage produced in Incheon area, the detection rate was 4.0%. The detection concentration was 0.01~0.02 mg/kg, which was lower than the domestic recommended limit. Fumonisins were detected in a slightly different manner from the results of mycotoxin studies reported in Korea, which is attributed to the high temperature and dry summer weather of the year. The result of LC-MS/MS method performance of 9 mycotoxins, the recovery of DON was quite low as $41.53{\pm}3.91%$ that is not suitable for simultaneous analysis. This is probably due to that the extract solution used in this study was not suitable for the extraction of DON, along with the characteristics of a very dry forage. For the study of mycotoxins in Incheon area forage for the first time, further investigation is needed for the safe supply of livestock products.

Simultaneous Determination of 80 Unapproved Compounds using HPLC and LC-MS/MS in Dietary Supplements

  • Kwon, Jeongeun;Shin, Dasom;Kang, Hui-Seung;Suh, Junghyuck;Lee, Gunyoung;Lee, Eunju
    • Mass Spectrometry Letters
    • /
    • v.13 no.3
    • /
    • pp.58-83
    • /
    • 2022
  • We developed analytical methods using high performance chromatography (HPLC) and liquid chromatography tandem mass spectrometry (LC-MS/MS) for the simultaneous determination of 80 unapproved compounds in dietary supplements. The target compounds for analysis were unapproved ingredients (e.g., pharmaceuticals) that have potential adverse effects on consumers owing to accidental misuse, overuse, and interaction with other medication in dietary supplement. Two analytical methods were tested to identify the optimal validation results according to AOAC guideline. As a result, limit of quantification (LOQ) was 0.14-0.5 ㎍ mL-1; linearity (r2) was ≥ 0.99; accuracy (expressed as recovery) was 78.9-114%; precision (relative standard deviation) was ≤ 4.28% in the HPLC method. In the LC-MS/MS method, LOQ was 0.01-2 ng mL-1, linearity (r2) was ≥0.98, accuracy was 71.7-119%; precision was ≤ 12.5%. The developed methods were applied to 51 dietary supplements collected from 2019 to 2021 through MFDS alert system. Based on our previous monitoring study, major compounds were icariin, sibutramine, yohimbine, sildenafil, tadalafil, sennosides (A, B), cascarosides (A, B, C, D), and phenolphthalein. In this study, we re-analyzed samples of detected compounds, and evaluated the statistical difference using Bland-Altman analysis to compare two analytical approaches between HPLC and LC-MS/MS. These results showed a good agreement between two methods that can be used to monitor the unapproved ingredients in dietary supplements. The developed two methods are complementarily suitable for monitoring the adulteration of 80 unapproved compounds in dietary supplements.

Analysis of streptomycin in honey by LC-MS/MS (LC-MS/MS를 이용한 벌꿀 중 스트렙토마이신 분석)

  • Shim, Young-Eun;Myung, Seung-Woon
    • Analytical Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.424-431
    • /
    • 2008
  • Streptomycin, which is one of aminoglycoside antibiotics, has been widely used in the rearing of food-producing animals to prevent and treat diseases in cattle, pigs and poultry. Although not licensed in South Korea, streptomycin has also been used for the treatment of bacterial honeybee disease, such as European foulbrood in Third World countries. A reliable and effective method using liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the determination of streptomycin in honey. A established method was optimized the clean-up and extraction procedure for the trace determination, good precision and accuracy. And the chromatographic and tandem mass spectrometric parameters were also optimized. The precision (RSD) and accuracy (bias) in the concentration range of 5.0~50.0 ug/kg were 5.5~14% and -10.0~8.0%, respectively. Limit of detection was 0.75 ug/kg and recovery of streptomycin spiked at level of 10 ug/kg in honey was 74%. The established and validated method was applied to determine streptomycin in honey which was on the market.

LC-MS/MS Profiling-Based Secondary Metabolite Screening of Myxococcus xanthus

  • Kim, Ji-Young;Choi, Jung-Nam;Kim, Pil;Sok, Dai-Eun;Nam, Soo-Wan;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.51-54
    • /
    • 2009
  • Myxobacteria, Gram-negative soil bacteria, are a well-known producer of bioactive secondary metabolites. Therefore, this study presents a methodological approach for the high-throughput screening of secondary metabolites from 4 wild-type Myxococcus xanthus strains. First, electrospray ionization mass spectrometry (ESI-MS) was performed using extracellular crude extracts. As a result, 22 metabolite peaks were detected, and the metabolite profiling was then conducted using the m/z value, retention time, and MS/MS fragmentation pattern analyses. Among the peaks, one unknown compound peak was identified as analogous to the myxalamid A, B, and C series. An analysis of the tandem mass spectrometric fragmentation patterns and HR-MS identified myxalamid K as a new compound derived from M. xanthus. In conclusion, LC-MS/MS-based chemical screening of diverse secondary metabolites would appear to be an effective approach for discovering unknown microbial secondary metabolites.

Rapid Quantitative Analysis of Vancomycin in Human Plasma and Urine Using LC-MS/MS (LC - MS/MS를 이용한 혈장과 뇨중에서 Vancomycin의 빠른정량분석)

  • Kim, Hohyun;Roh, Hyeongjin;Han, Sang-Beom
    • Analytical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.410-416
    • /
    • 2002
  • In this study, a new quantitative analytical method has been developed for the rapid determination of vancomycin in human plasma and urine using liquid chromatography/tandem mass spectrometry (LC - MS/MS). Chromatography was carried out on a $C_{18}$ XTerra MS column ($2.1{\times}30mm$) with a particle size of $3.5{\mu}m$. The mobile phase was 0.25% formic acid in 10% acetonitrile and the flow rate was $250{\mu}L/min$. Vancomycin and caffeine (internal standard) were detected by MS/MS using multiple reaction monitoring (MRM). Vancomycin gives a predominant doubly protonated precursor molecule ($[M+2H]^{2+}$) at m/z 725.0 and a corresponding product ion of m/z 100.0. Detection of vancomycin was good, accurate and precise, with a limit of detection of 1 nM in plasma. The calibration curves for vancomycin in human plasma was linear in a concentration range of $0.01{\mu}M$ - $100{\mu}M$ for plasma. This method has been successfully applied to determine the concentration of vancomycin in human plasma and urine from pharmacokinetic study and relative studies.

Analysis of Methionine Oxidation in Myosin Isoforms in Porcine Skeletal Muscle by LC-MS/MS Analysis

  • Jeong, Jin-Yeon;Jung, Eun-Young;Jeong, Tae-Chul;Yang, Han-Sul;Kim, Gap-Don
    • Food Science of Animal Resources
    • /
    • v.36 no.2
    • /
    • pp.254-261
    • /
    • 2016
  • The purpose of this study was to analyze oxidized methionines in the myosin isoforms of porcine longissimus thoracis, psoas major, and semimembranosus muscles by liquid chromatography (LC) and mass spectrometry (MS). A total of 836 queries matched to four myosin isoforms (myosin-1, -2, -4, and -7) were analyzed and each myosin isoform was identified by its unique peptides (7.3-13.3). Forty-four peptides were observed from all three muscles. Seventeen peptides were unique to the myosin isoform and the others were common peptides expressed in two or more myosin isoforms. Five were identified as oxidized peptides with one or two methionine sulfoxides with 16 amu of mass modification. Methionines on residues 215 (215), 438 (438), 853 (851), 856 (854), 1071 (1069), and 1106 (1104) of myosin-1 (myosin-4) were oxidized by the addition of oxygen. Myosin-2 had two oxidized methionines on residues 215 and 438. No queries matched to myosin-7 were observed as oxidized peptides. LC-MS/MS allows analysis of the oxidation of specific amino acids on specific residue sites, as well as in specific proteins in the food system.

Multiresidue Analysis of 124 Pesticides in Soils with QuEChERS extraction and LC-MS/MS (QuEChERS 및 LC-MS/MS를 이용한 토양 중 124종 잔류농약다성분 분석법)

  • Gwon, Ji-Hyeong;Kim, Taek-Kyum;Seo, Eun-Kyung;Hong, Su-Myeong;Kwon, Hye-Yong;Kyung, Ki-Sung;Kim, Jang-Eok;Cho, Nam-Jun
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.296-313
    • /
    • 2014
  • A QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) multiresidue method was developed for the simultaneous analysis of 124 pesticides in soil by LC-MS. The procedure involved liquid extraction of soil immersed with 0.2N $NH_4Cl$ by acetonitrile with 1% acetic acid, followed by anhydrous $MgSO_4$ and sodium acetate, and dispersive SPE cleanup with $MgSO_4$, primary secondary amine (PSA) and $C_{18}$. The extracts were analyzed with LC-MS/MS in ESI positive mode. Standard calibration curves were made by matrix matched standards and their correlation coefficients were higher than 0.99. Recovery studies for the validation were carried out using two type soils, loam and sandy loam, at four concentration levels (0.005, 0.01, 0.02, and 0.1 mg/kg). The recoveries of pesticides were in the range of 70-120% with < 20% RSD except 4 pesticides, Benfuracarb, Ethiofencarb, Pymetrozine, and Pyrethrin. This result indicated that the method using QuEChERS and LC-MS/MS could be applied for the simultaneous determination of pesticide residues in soils.