• 제목/요약/키워드: LBB(Leak before break)

검색결과 60건 처리시간 0.016초

원자력 발전소 배관에 대한 파단전누설 개념 적용기준의 수정 (Modification of Current Leak Before Break Criteria for Nuclear Piping System)

  • 유영준;김영진
    • 대한기계학회논문집A
    • /
    • 제20권6호
    • /
    • pp.1862-1871
    • /
    • 1996
  • The puopose of this paper is sto modify the current LBB criteria. The validity of current LBB criteria and current standard LBB analysis mehtod are evaluated using linear elastic fracture mechanics and elastic-plastic fracture mechanics. The results of evaluation demonstrate that the current LBB driteria are very conservative and some level of margins already exist in the standard LBB analysis method. Thus, the margin on load .root. and margin on crack size 2 can be eliminated to extend LBB application for the samller diameter pipe.

LEAK-BEFORE-BREAK ANALYSIS OF THERMALLY AGED NUCLEAR PIPE UNDER DIFFERENT BENDING MOMENTS

  • LV, XUMING;LI, SHILEI;ZHANG, HAILONG;WANG, YANLI;WANG, ZHAOXI;XUE, FEI;WANG, XITAO
    • Nuclear Engineering and Technology
    • /
    • 제47권6호
    • /
    • pp.712-718
    • /
    • 2015
  • Cast duplex stainless steels are susceptible to thermal aging during long-term service at temperatures ranging from $280^{\circ}C$ to $450^{\circ}C$. To analyze the effect of thermal aging on leak-before-break (LBB) behavior, three-dimensional finite element analysis models were built for circumferentially cracked pipes. Based on the elasticeplastic fracture mechanics theory, the detectable leakage crack length calculation and J-integral stability assessment diagram approach were carried out under different bending moments. The LBB curves and LBB assessment diagrams for unaged and thermally aged pipes were constructed. The results show that the detectable leakage crack length for thermally aged pipes increases with increasing bending moments, whereas the critical crack length decreases. The ligament instability line and critical crack length line for thermally aged pipes move downward and to the left, respectively, and unsafe LBB assessment results will be produced if thermal aging is not considered. If the applied bending moment is increased, the degree of safety decreases in the LBB assessment.

유효탄성계수를 이용한 균열 비선형 및 재료 비선형을 고려한 파단전누설(LBB) 평가 방법 (Leak-Before-Break (LBB) Assessment Method Considering Crack Nonlinearity Using Effective Elastic Modulus and Material Nonlinearity)

  • 김만원;김성환;이의종
    • 대한기계학회논문집A
    • /
    • 제35권6호
    • /
    • pp.651-659
    • /
    • 2011
  • 최근 열출력이 향상된 신규 원자력발전소의 개발이 증가하고 있으며 배관계에 가해지는 모멘트 및 하중의 크기도 증가하는 경향이므로 배관의 파단전누설(LBB) 적용조건 여유도가 작아질 수 있다. 본 논문에서는 이러한 배관에서 LBB 적용조건을 만족시키기 위한 추가적인 여유도 확보의 한 방법으로써 균열의 비선형과 재료물성치를 고려하는 방법을 제시하였다. 균열 및 재료의 비선형을 고려하기 위하여 유한요소해석과 보(beam) 이론을 병용하였다. 원자력 배관을 모델로 하여 본 논문에서 제안한 방법으로 LBB 균열안정성 해석을 수행하였으며, LBB 여유도가 낮은 위치에서 균열 및 재료 비선형을 고려함으로 써 추가적인 LBB 여유도를 확보할 수 있음을 확인하였다.

Application of the Leak Before Break(LBB) Concept to a Heat Exchanger in a Nuclear Power Plant

  • Kwon, Jae-Do;Lee, Choon-Yeol;Lee, Yong-Son;Sul, Il-Chan
    • Journal of Mechanical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.10-20
    • /
    • 2001
  • The leak before break(LBB) concept is difficult to apply to a structure with a thin tube that is immersed in a water environment. A heat exchanger in a nuclear power plant is such a structure. The present paper addresses an application of the LBB concept to a heat exchanger in a nuclear power plant. The minimum leaked coolant amount(approximately 37.9 liters) containing the radioactive material which can activate the radiation detector device installed in near the heat exchanger is assumed. A postulated initial flaw size that can not grow to a critical flaw size within the time period to activate the radiation detector is justified. In this case, the radiation detector can activate the warning signal caused by coolant leakage from initially postulated flaws of the heat exchanger. The nuclear plant can safely shutdown when this occurs. Since the postulated initial flaw size can not grow to the critical flaw size, the structural integrity of the heat exchanger is not impeded. Particularly the informational scenario presented in this paper discusses an actual nuclear plant.

  • PDF

분기관파단이 노심지지배럴의 쉘응답에 미치는 영향 (The Effect of Tributary Pipe Breaks on the Core Support Barrel Shell Responses)

  • Jhung, Myung-Jo;Hwan, Won-Gul
    • Nuclear Engineering and Technology
    • /
    • 제25권2호
    • /
    • pp.204-214
    • /
    • 1993
  • 본 논문은 원자력발전소의 배관설계에 파단전 누설(leak-before-break : LBB) 개념이 적용됨에 따라 새롭게 해석대상이 된 분기관파단에 의한 노심지지배럴의 쉘응답을 계산한 것이다. 앞으로 직경 10인치 이상의 고에너지 배관에 대해 LBB 개념이 적용될 것으로 예상되는 바, 이 경우 LBB 적용대상에서 제외되는 유일한 1차측 배관인 3인치 가압기 분무관의 파단을 가정하였고 이때 노심 지지배럴에 가해지는 쉘응답을 구하였다. 이들 응답을 직경 10인치 이상인 배관파단시의 응답과 비교한 결과 앞으로 직경 10인치 이상의 배관에 대해 LBB 개념이 적용될 경우 배관파단에 대한 노심지지배럴의 쉘응답은 무시할 수 있음을 보였다.

  • PDF

Dynamic Strain Aging on the Leak-Before-Break Analysis in SA106 Gr.C Piping Steel

  • Kim, Jin-Weon;Kim, In-Sup
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(3)
    • /
    • pp.193-198
    • /
    • 1996
  • The effect of dynamic strain aging (DSA) on the leak-before-break (LBB) analysis was estimated through the evaluation of leakage-size-crack and flaw stability in SA106 Gr.C piping steel. Also. the results were represented as a form of "LBB allowable load window". In the DSA temperature region. the leakage-size-crack length was smaller than that at other temperatures and it increased with increasing tensile strain rate. In the results of flaw stability analysis. the lowest instability load appeared at the temperature corresponding to minimum J- R curve which was caused by DSA. The instability load near the plant operating temperature depended on the loading rate of J-R data. and decreased with increasing tensile strain rate. These are due to the strain hardening characteristic and strain rate sensitivity of DSA. In the "LBB allowable load window". LBB allowable region was the narrowest at the temperature and loading conditions where DSA occurs.

  • PDF

선형적으로 변하는 단면적을 가진 균열에서의 누설률 평가 (Evaluation of Leak Rate Through a Crack with Linearly-Varying Sectional Area)

  • 박재학
    • 대한기계학회논문집A
    • /
    • 제40권9호
    • /
    • pp.821-826
    • /
    • 2016
  • 원자력 배관 설계에는 파단전 누설(leak before break, LBB) 개념이 사용되고 있다. LBB 개념의 적용을 위해서는 관통균열을 통한 누설률을 정확하게 예측할 수 있어야 한다. 단면적이 일정한 관통균열에 대한 누설률 해석은 많이 이루어지고 있으나 실제 관찰되는 관통균열에서는 배관 내면 쪽과 외면 쪽의 단면적이 다른 경우가 많이 발생된다. 따라서 본 논문에서는 유동경로를 따라 선형적으로 변화하는 단면적을 가진 관통균열에 대하여 누설률을 평가하여 단면적의 분포가 누설률에 미치는 영향을 살펴보았다. 또한 클래딩 등에 의하여 두께 방향으로 이중 재료로 된 배관에 존재하는 관통균열에 대해서도 누설률을 평가하여 유동경로를 따라 달라지는 균열면 형태학적 변수가 누설률에 미치는 영향을 살펴보았다.

직경이 작은 원자력배관의 파단전누설 해석에 미치는 노즐의 영향 (Effect of Nozzle on LBB Evaluation for Small Diameter Nuclear Piping)

  • 유영준;김영진
    • 대한기계학회논문집A
    • /
    • 제20권6호
    • /
    • pp.1872-1881
    • /
    • 1996
  • LBB(Leak-Before-Break) analysis is performed for the highest stress location of each different type of mateerials in the nuclear piping line. In most cases, the highest stress occurs in the pipe and nozzle interface location. i.e. terminal end. The current finite element analysis approach utilizes the symmetry condition both for locations near the nozzle and for locationa away from the nozzle to minimize the size of the finite element model and to make analysis simple when calculating the J-integral values at the crack tip. In other words, the nozzle is not included in the finite element model. However, in reality, the symmetric condition is not applicable for the pipe-nozzle interface location. Because the pipe-nozzle interface location is asymmetric due to different stiffenss of the pipe and nozzle(both material and dimensions). The simplified analysis approach for pipe-nozzle interface locaiton is too conservative for a smaller diameter piping. In tlhis paper, various analyses are performed for the range of materials and crack sizes to evaluate the nozzle effect for a LBB anlaysis. This paper presents methodology for developing the piping evaluaiton diagram at the pipe-nozzle interface location.

REVIEW OF DYNAMIC LOADING J-R TEST METHOD FOR LEAK BEFORE BREAK OF NUCLEAR PIPING

  • Oh, Young-Jin;Hwang, Il-Soon
    • Nuclear Engineering and Technology
    • /
    • 제38권7호
    • /
    • pp.639-656
    • /
    • 2006
  • In order to apply the leak before break (LBB) concept to nuclear piping systems, the dynamic strain aging effect of low carbon steel materials has to be taken into account, in compliance with the requirements of the Korean Standard Review Guide (KSRG) 3.6.3-1. For this goal, J-R tests are needed for a range of various temperatures and loading rates, including dynamic loading conditions. In the dynamic loading J-R test, the unloading compliance method can not be applied to measure the crack growth and direct current potential drop (DCPD) method; this method also has a problem defining the crack initiation point. The normalization method is known as a very useful method to determine the J-R curve under dynamic loading because it does not need additional equipment or complicated loading sequences such as electric current or unloading. This method was accepted by the American Society for Testing and Materials (ASTM) as a standard test method E1820 A15 in 2001. However, it has not yet been clearly verified yet if the normalization method is sufficiently reliable to be applied to LBB. In this study, the basic background of the J-integral, LBB and dynamic loading J-R test are explained, and the current status for dynamic loading J-R test methods are reviewed from the view point of LBB for nuclear piping. In particular, the theoretical and historical background of the normalization method which has received attention recently, is summarized. Recent studies for this method are introduced and future works are suggested that may improve the reliability of LBB for nuclear piping.

인장 굽힘피로를 받는 부재의 피로수명과 균열관통 (Fatigue Life and Peneration Behaviour of Material under Combined Tension and Bending Stress)

  • 남기우
    • 한국해양공학회지
    • /
    • 제8권1호
    • /
    • pp.41-49
    • /
    • 1994
  • The leak-before-break(LBB) design on the large structures such as ship's hull, tank structure, pressure vessels etc. is one of the most inportant subjects for the evaluation and the assurance of safety. In these structures, various loads are acting. In some structural members, therefore, out-of-plane stress due to bending often may become with in-plane stress due to stretching. In the present report, the characteristics of fatigue life and peneration behaviour from a surface cracked plate under combined tension and bending have been studied experimentally and analytically by using eccentricity. Estimation of fatigue crack growth was done with the Newman-Raju formula before penetration, and with the stress intensity factor after penetration proposed by the author. Calculated aspect ratio showed the good agreement with the experimental result. It was also found that particular crack growth behaviour and crack shape after penetration can be satisfactorily evaluated using the K solution proposed.

  • PDF