• Title/Summary/Keyword: LAMP-3

Search Result 896, Processing Time 0.028 seconds

Design Method for Flowing Water Purification with UV Lamp (UV램프를 이용한 유수처리형 살균장치의 설계방법)

  • Jung, Byung-Kyun;Lee, Jin-Jong;Jeong, Byeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.455-460
    • /
    • 2009
  • A number of factors combine to make ultraviolet radiation a superior means of water purification for ground water, rainwater harvesting systems and so on. Ultraviolet radiation is capable of destroying all types of bacteria. Additionally, ultraviolet radiation disinfects rapidly without the use of heat or chemical additives which may undesirably alter the composition of water. In a typical operation, water enters the inlet of a UV lamp and flows through the annular space between the quartz sleeve and the outside chamber wall. The irradiated water leaves through the outlet nozzle. Several design features are combined to determine the dosage delivered. The first is Wavelength output of the lamp, the Second is Length of the lamp - when the lamp is mounted parallel to the direction of water flow, the exposure time is proportional to the length of the lamp, the third is Design water flow rate - exposure time is inversely related to the linear flow rate, the forth is Diameter of the purification chamber - since the water itself absorbs UV energy, the delivered dosage diminishes logarithmically with the distance from the lamp. In this paper, It describe the how to design optimal UV disinfection device for ground water and rainwater. To search the optimal design method, it was performed computer simulation with 3D-CFD discrete ordinates model and manufactured prototype. Using proposed design method manufactured prototype applied to disinfection test and proved satisfied performance.

Analysis of Impulse Withstand Voltage Performance of Lighting Equipment (조명기기의 임펄스내전압 성능의 분석)

  • Lee, Bok-Hee;Pang, Pyung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.3
    • /
    • pp.91-96
    • /
    • 2014
  • Modern electronic circuits are becoming more vulnerable to damage by surges, and it is required to improve the impulse withstand voltage performance of electrical and electronic equipment. This paper presents the impulse withstand voltage performance of lighting equipment connected to power lines, and the impulse withstand voltage tests for fluorescent lamp, LED lamp and halogen lamp were carried out according to the reference standards under normal service conditions. To conduct performance tests against lightning surge, a combination wave ($1.2/50{\mu}s$ voltage - $8/20{\mu}s$ current) was employed. The test surge was applied between lines or between line and ground of the specimen to be measured. The test surge was applied synchronized at the peak value of the positive and negative AC voltage waves. As a consequence, some specimens satisfied the impulse withstand voltage test criteria, but lighting equipment such as 36W fluorescent lamps, 5W and 5.5W LED lamps and 50W halogen lamp were damaged at the test voltage levels between power lines. It is needed to improve the qualities of lighting equipment to satisfy EMC immunity requirements of equipment for general lighting purposes.

Simple and Rapid Detection of Vancomycin-Resistance Gene from Enterococci by Loop-Mediated Isothermal Amplification

  • Baek, Yun Hee;Hong, Seung Bok;Shin, Kyeong Seob
    • Biomedical Science Letters
    • /
    • v.26 no.3
    • /
    • pp.149-156
    • /
    • 2020
  • We developed a simple and rapid method for detecting vancomycin resistance genes, such as vanA and vanB, using loop-mediated isothermal amplification (LAMP). To identify not only vancomycin resistance genes, but also the genus Enterococcus, primers were designed for vanA, vanB, and 16S rRNA. Screening for vancomycin susceptibility in Enterococcus was performed using Etest (bioMérieux Inc). The results of the LAMP assay were compared to those of real-time RT-PCR. The optimal conditions for the LAMP assay were 65℃ for 60 min. The detection limits of the LAMP assay for vanA, and vanB were 2 × 102 copies/reaction. Compared to RT-PCR, the sensitivities and specificities of LAMP for 16S rRNA, vanA, and vanB were 100/100%, 100/100%, and 100/100%, respectively. The vanA genotype-vanB phenotype accounted for 57.5% (46/80) of the vancomycin-resistant Enterococci samples collected from 2016 to 2019. In conclusion, the LAMP assay developed in this study showed high sensitivity and specificity for vancomycin-resistant genes. Moreover, due to the simplicity and rapidity of the LAMP assay, its use can be very useful in clinical microbiology laboratories.

Database Construction of High-resolution Daily Meteorological and Climatological Data Using NCAM-LAMP: Sunshine Hour Data (NCAM-LAMP를 이용한 고해상도 일단위 기상기후 DB 구축: 일조시간 자료를 중심으로)

  • Lee, Su-Jung;Lee, Seung-Jae;Koo, Ja-seob
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.135-143
    • /
    • 2020
  • Shortwave radiation and sunshine hours (SHOUR) are important variables having many applications, including crop growth. However, observational data for these variables have low horizontal resolution, rendering its application to related research and decision making on f arming practices challenging. In the present study, hourly solar radiation data were physically generated using the Land-Atmosphere Modeling Package (LAMP) at the National Center f or Agro-Meteorology, and then daily SHOUR fields were calculated through statistical downscaling. After data quality evaluation, including case studies, the SHOUR data were added to the existing publically accessible LAMP daily database. The LAMP daily dataset, newly updated with SHOUR, has been provided operationally as input data to the "Gyeonggi-do Agricultural Drought Prediction System," which predicts agricultural weather disasters and field crop growth status.

Development of an Improved Loop-Mediated Isothermal Amplification Assay for On-Site Diagnosis of Fire Blight in Apple and Pear

  • Shin, Doo-San;Heo, Gwang-Il;Son, Soo-Hyeong;Oh, Chang-Sik;Lee, Young-Kee;Cha, Jae-Soon
    • The Plant Pathology Journal
    • /
    • v.34 no.3
    • /
    • pp.191-198
    • /
    • 2018
  • Fast and accurate diagnosis is needed to eradicate and manage economically important and invasive diseases like fire blight. Loop-mediated isothermal amplification (LAMP) is known as the best on-site diagnostic, because it is fast, highly specific to a target, and less sensitive to inhibitors in samples. In this study, LAMP assay that gives more consistent results for on-site diagnosis of fire blight than the previous developed LAMP assays was developed. Primers for new LAMP assay (named as DS-LAMP) were designed from a histidine-tRNA ligase gene (EAMY_RS32025) of E. amylovora CFBP1430 genome. The DS-LAMP amplified DNA (positive detection) only from genomic DNA of E. amylovora strains, not from either E. pyrifoliae (causing black shoot blight) or from Pseudomonas syringae pv. syringae (causing shoot blight on apple trees). The detection limit of DS-LAMP was 10 cells per LAMP reaction, equivalent to $10^4$ cells per ml of the sample extract. DS-LAMP successfully diagnosed the pathogens on four fire-blight infected apple and pear orchards. In addition, it could distinguish black shoot blight from fire blight. The $B{\ddot{u}}hlmann$-LAMP, developed previously for on-site diagnosis of fire blight, did not give consistent results for specificity to E. amylovora and on-site diagnosis; it gave positive reactions to three strains of E. pyrifoliae and two strains of P. syringae pv. syringae. It also, gave positive reactions to some healthy sample extracts. DS-LAMP, developed in this study, would give more accurate on-site diagnosis of fire blight, especially in the Republic of Korea, where fire blight and black shoot blight coexist.

Qualitative Verification of the LAMP Hail Prediction Using Surface and Radar Data (지상과 레이더 자료를 이용한 LAMP 우박 예측 성능의 정성적 검증)

  • Lee, Jae-yong;Lee, Seung-Jae;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.179-189
    • /
    • 2022
  • Ice and water droplets rise and fall above the freezing altitude under the effects of strong updrafts and downdrafts, grow into hail, and then fall to the ground in the form of balls or irregular lumps of ice. Although such hail, which occurs in a local area within a short period of time, causes great damage to the agricultural and forestry sector, there is a paucity of domestic research toward predicting hail. The objective of this study was to introduce Land-Atmosphere Modeling Package (LAMP) hail prediction and measure its performance for 50 hail events that occurred from January 2020 to July 2021. In the study period, the frequency of occurrence was high during the spring and during afternoon hours. The average duration of hail was 15 min, and the average diameter of the hail was 1 cm. The results showed that LAMP predicted hail events with a detection rate of 70%. The hail prediction performance of LAMP deteriorated as the hail prediction time increased. The radar reflectivity of actual cases of hail indicated that the average maximum reflectivity was greater than 40 dBZ regardless of altitude. Approximately 50% of the hail events occurred when the reflectivity ranged from 30~50 dBZ. These results can be used to improve the hail prediction performance of LAMP in the future. Improved hail prediction performance through LAMP should lead to reduced economic losses caused by hail in the agricultural and forestry sector through preemptive measures such as net coverings.

Comparison of Loop-Mediated Isothermal Amplification and Real-Time PCR for the Rapid Detection of Salmonella Typhimurium, Listeria monocytogenes and Cronobacter sakazakii Artificially Inoculated in Foods (식품에 인위접종된 Salmonella Typhimurium, Listeria monocytogenes, Cronobacter sakazakii의 신속검출을 위한 Real-time PCR과 Loop-mediated isothermal amplification 비교)

  • Kim, Jin-Hee;Oh, Se-Wook
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.2
    • /
    • pp.135-139
    • /
    • 2019
  • The objective of this research was to compare loop-mediated isothermal amplification (LAMP) with real-time polymerase chain reaction (PCR) for the rapid detection of pathogens in foods. In this study, the limits of detection (LODs) for Salmonella Typhimurium, Listeria monocytogenes, and Cronobacter sakazakii were evaluated in various foods. Among 11 samples tested for S. Typhimurium, LAMP and real-time PCR had the same LODs in beef and duck meat whereas real-time PCR was more sensitive than the LAMP in 8 samples. However, S. Typhimurium in chocolate samples was not detected by real-time PCR. The sensitivity of real-time PCR was high in all samples inoculated with L. monocytogenes and C. sakazakii whereas LAMP was more sensitive than real-time PCR in oil-rich foods. Therefore, LAMP can be shown as an easrer, more convenient method, as well as effective analytical method for testing difficult samples when employed in PCR.

A Design of Electronic Ballast for 70W Metal Halide Lamps (70W 메탈핼라이드용 전자식 안정기의 설계)

  • 최명호;임성훈;한병성
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.3
    • /
    • pp.7-13
    • /
    • 1999
  • In this paper, a low wattage high frequency operation electronic ballast for double ended 70W metal halide lamp has been investigated As an input source of the proposed ballast, 220V, 60 Hz ac voltage is used and is converted high frequency ac voltage by power processing system. To prevent a physical destruction of the lamp from acoustic resonance phenorrenon, the proposed ballast sLWlies alternating voltage of 22kHz frequency to a metal halide lamp. It shows sorre efficacious result that reduce the start up tiIre of lamp and electric power consumption. By testing the proposed ballast, lamp voltage and lamp current are 155Vpeak, O.64A, respectively. Lamp luminous flux is 5300lm with 82W input power and ballast efficiency is 64.63 Im/w. The average starting tiIre and restriking tiIre of lamp are 3.9 and 4.5 minutes, respectively.tively.

  • PDF

Gaussian Decomposition Method in Designing a Freeform Lens for an LED Fishing/Working Lamp

  • Nguyen, Anh Q.D.;Nguyen, Vinh H.;Lee, Hsiao-Yi
    • Current Optics and Photonics
    • /
    • v.1 no.3
    • /
    • pp.233-238
    • /
    • 2017
  • In this paper we propose a freeform secondary lens for an LED fishing/working lamp (LFWL). This innovative LED lamp is used to replace the traditional HID fishing lamp, to satisfy the lighting demands of fishing and the on-board activities on fishing boats. To realize the freeform lens's geometry, Gaussian decomposition is involved in our optics-design process for approaching the targeted light intensity distribution curve (LIDC) of the LFWL lens. The simulated results show that the illumination on the deck, on the sea's surface, and underwater shows only small differences between LED fishing/working lamps and HID fishing lamps. Meanwhile, a lighting efficiency of 91% with just one third of the power consumption can be achieved, when the proposed LED fishing/working lamps are used instead of HID fishing lamps.

Analysis of Optical and Electromagnetic Distribution of Ring-shaped Electrodeless Fluorescent Lamps (환형 무전극 램프의 광학적, 전자계적 해석)

  • 조주웅;최용성;김용갑;박대희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.460-464
    • /
    • 2004
  • In recent, there have been several developments in lamp technology that promise savings in electrical power consumption and improved quality of the lighting space. Above all, the advantage of ring-shaped electrodeless fluorescent lamp is the removal of internal electrodes and heating filaments that are a light-limiting factor of conventional fluorescent lamps. Therefore, the life time of ring-shaped electrodeless fluorescent lamps is substantially higher than that of conventional fluorescent lamps and last up to 60,000 hours and is intended as a high efficacy replacement for the incandescent reflector lamp in many applications. In this paper, maxwell 3D finite element analysis program (Ansoft) was used to obtain electromagnetic properties associated with the coil and nearby structures. The electromagnetic emitting properties were presented by D simulation software operated at 250KHz and some specific conditions. Photometric characteristic of the ring-shaped electrodeless fluorescent lamp were investigated using LS-100 lightmeter and TA-0510 thermometer respectively.