광의 세기에 따라 눈의 시감효율은 추상체와 간상체에 의해 파장에 따라 2개의 함수로 이루어진다. 광자에 대한 추상체-간상체의 반응확률을 이용하여 $P{\lambda}=A{\cdot}e^{-({\lambda}-{\lambda}_u)^2/2W^2}$의 분포함수 수식을 유도하였다. 이 식은 파장에 따른 CIE의 눈의 시감효율 곡선에 잘 적용되었다. 눈앞에 렌즈가 있는 경우 시감도는 보정 되어야 한다. 렌즈를 투과할 광은 흡수 파장에 의존하고, 최종 시감도는 추정방법은 시감도와 렌즈의 투과율 세기의 곱으로 표현된다. $$Pf({\lambda})=T({\lambda}){\cdot}P({\lambda})$$. 브라운 칼라 렌즈에 대해 시감도인 photopic과 scotopic 적용하였다.
Using a cosmological ${\Lambda}CDM$ simulation, we analyze the differences between the widely-used spin parameters suggested by Peebles and Bullock. The dimensionless spin parameter ${\lambda}$ proposed by Peebles is theoretically well-justified but includes an annoying term, the potential energy, which cannot be directly obtained from observations and is computationally expensive to calculate in numerical simulations. The Bullock's spin parameter ${\lambda}^{\prime}$ avoids this problem assuming the isothermal density profile of a virialized halo in the Newtonian potential model. However, we find that there exists a substantial discrepancy between ${\lambda}$ and ${\lambda}^{\prime}$ depending on the adopted potential model (Newtonian or Plummer) to calculate the halo total energy and that their redshift evolutions differ to each other significantly. Therefore, we introduce a new spin parameter, ${\lambda}^{\prime\prime}$, which is simply designed to roughly recover the value of ${\lambda}$ but to use the same halo quantities as used in ${\lambda}^{\prime}$. If the Plummer potential is adopted, the ${\lambda}^{\prime\prime}$ is related to the Bullock's definition as ${\lambda}^{\prime\prime}=0.80{\times}(1+z)^{-1/12}{\lambda}^{\prime}$. Hence, the new spin parameter ${\lambda}^{\prime\prime}$ distribution becomes consistent with a log-normal distribution frequently seen for the ${\lambda}^{\prime}$ while its mean value is much closer to that of ${\lambda}$. On the other hand, in case of the Newtonian potential model, we obtain the relation of ${\lambda}^{\prime\prime}=(1+z)^{-1/8}{\lambda}^{\prime}$; there is no significant difference at z = 0 as found by others but ${\lambda}^{\prime}$ becomes more overestimated than ${\lambda}$ or ${\lambda}^{\prime\prime}$ at higher redshifts. We also investigate the dependence of halo spin parameters on halo mass and redshift. We clearly show that although the ${\lambda}^{\prime}$ for small-mass halos with $M_h$ < $2{\times}10^{12}M_{\odot}$ seems redshift independent after z = 1, all the spin parameters explored, on the whole, show a stronger correlation with the increasing halo mass at higher redshifts.
E. M. Silvia introduced the class $S^\lambda_\alpha$ of $\alpha$-spirallike functions f(z) satisfying the condition $$ (A) Re[(e^{i\lambda} - \alpha) \frac{zf'(z)}{f(z)} + \alpha \frac{(zf'(z))'}{f'(z)}] > 0, $$ where $\alpha \geq 0, $\mid$\lambda$\mid$ < \frac{\pi}{2}$ and $$\mid$z$\mid$ < 1$. We will generalize Silvia class of functions by formally replacing f(z) in the denominator of (A) by a spirallike function g(z). We denote the new class of functions by $Y(\alpha,\lambda)$. In this note we obtain some results for the class $Y(\alpha,\lambda)$ including integral representation formula, relations between our class $Y(\alpha,\lambda)$ and Ziegler class $Z_\lambda$, the radius of convexity problem, a few coefficient estimates and a covering theorem for the class $Y(\alpha,\lambda)$.
In this paper we establish some recurrence relations satisfied by the quotient moments of the upper record values from the Weibull distribution. Suppose $X{\in}WEI({\lambda})\;then\;E(\frac {X^\tau_U(m)} {X^{s+1}_{U(n)}})=\frac{1}{(s-\lambda+1)}E(\frac {X^\tau_U(m)}{X^{s-\lambda+1}_{U(n-1)}})-\frac{1}{(s-\lambda+1)}+E(\frac{X^\tau_U(m)}{X^{s-\lambda+1}_{U(n)}})\;and\;E(\frac {X^{\tau+1}_{U(m)}}{X^s_{U(n)}})=\frac{1}{(r+\lambda+1)}E(\frac{X^{\tau+\lambda+1}_{U(m)}}{X^s_{U(n-1)}})-\frac{1}{(\tau+\lambda+1)}E(\frac{X^{\tau+\lambda+1}_{U(m-1)}}{X^s_{U(n-1)}})$.
Let R be a ommutative ring with unity and F a finite free R-module. For a nonnegative integer r, there exists a natural filtration of$S_r(S_2F)$ such that its associated graded module is isomorphic to $\Sigma_{{\lambda}{\epsilon}{\tau}_r}\;L_{\lambda}F$, where ${\Gamma}_{\gamma}$ set of partitions such that $$\mid${\lambda}$\mid$-2r,{{\widetilde}{\lambda}}-{{\widetilde}{\lambda}}_1},...,{{\widetilde}{\lambda}}_k},\;each\;{{\widetilde}{\lambda}}_t}$,is even. We call such filtrations plethysm formulas. We extend the above plethysm formula to the version of chain complexes. By plethysm formula we mean the composition of universally free functors. $Let{\emptyset}:G->F$ be a morphism of finite free R-modules. We construct the natural decomposition of $S_{r}(S_2{\emptyset})$,up to filtrations, whose associated graded complex is isomorphic to ${\Sigma}_{{\lambda}{\varepsilon}{\tau}}_r}\;L_{\lambda}{\emptyset}$.
Let k be an integer with $k{\geq}3$. Define $h(k)=[{\frac{k+1}{2}}]$, ${\sigma}(k)={\min}\(2^{h(k)-1},\;{\frac{1}{2}}h(k)(h(k)+1)\)$. Suppose that ${\lambda}_1,{\ldots},{\lambda}_5$ are non-zero real numbers, not all of the same sign, satisfying that ${\frac{{\lambda}_1}{{\lambda}_2}}$ is irrational. Then for any given real number ${\eta}$ and ${\varepsilon}>0$, the inequality $${\mid}{\lambda}_1p^2_1+{\lambda}_2p^2_2+{\lambda}_3p^2_3+{\lambda}_4p^2_4+{\lambda}_5p^k_5+{\eta}{\mid}<({\max_{1{\leq}j{\leq}5}}p_j)^{-{\frac{3}{20{\sigma}(k)}}+{\varepsilon}}$$ has infinitely many solutions in prime variables $p_1,{\ldots},p_5$. This gives an improvement of the recent results.
For a distance-regular graph with valency k, second largest eigenvalue r and diameter D, it is known that r ≥ $min\{\frac{{\lambda}+\sqrt{{\lambda}^2+4k}}{2},\;a_3\}$ if D = 3 and r ≥ $\frac{{\lambda}+\sqrt{{\lambda}^2+4k}}{2}$ if D ≥ 4, where λ = a1. This result can be generalized to the class of edge-regular graphs. For an edge-regular graph with parameters (v, k, λ) and diameter D ≥ 4, we compare $\frac{{\lambda}+\sqrt{{\lambda}^2+4k}}{2}$ with the local valency λ to find a relationship between the second largest eigenvalue and the local valency. For an edge-regular graph with diameter 3, we look at the number $\frac{{\lambda}-\bar{\mu}+\sqrt{({\lambda}-\bar{\mu})^2+4(k-\bar{\mu})}}{2}$, where $\bar{\mu}=\frac{k(k-1-{\lambda})}{v-k-1}$, and compare this number with the local valency λ to give a relationship between the second largest eigenvalue and the local valency. Also, we apply these relationships to distance-regular graphs.
Park, Hae-Kyeong;Chi, Dong-Hae;Lee, Dong-Kyoo;Ryu, Kwan-Woo
ETRI Journal
/
제21권2호
/
pp.31-39
/
1999
Given two sorted lists A=(a0, a1, ${\cdots}$,a${\ell}$-1}) and B=(b0, b1, ${\cdots}$, bm-1), we are to merge these two lists into a sorted list C=(c0,c1, ${\cdots}$, cn-1), where n=${\ell}$+m. Since this is a fundamental problem useful to solve many problems such as sorting and graph problems, there have been many efficient parallel algorithms for this problem. But these algorithms cannot be performed efficiently in the postal model since the communication latency ${\lambda}$, which is of prime importance in this model, is not needed to be considered for those algorithms. Hence, in this paper we propose an efficient merge algorithm in this model that runs in $$2{\lambda}{\frac{{\log}n}{{\log}({\lambda}+1)}}+{\lambda}-1$$ time by using a new property of the bitonic sequence which is crucial to our algorithm. We also show that our algorithm is near-optimal by proving that the lower bound of this problem in the postal model is $f_{\lambda}({\frac{n}{2}})$, where $${\lambda}{\frac{{\log}n-{\log}2}{{\log}([{\lambda}]+1)}{\le}f_{\lambda}({\frac{n}{2}}){\le}2{\lambda}+2{\lambda}{\frac{{\log}n-{\log}2}{{\log}([{\lambda}]+1)}}$$.
렌즈의 광학계의 분광투과률을 높이기 위한 방법으로 무반사막의 다층화에 의한 광대역화와 낮은 반사률이 중요하다. 그러나 잔류반사광이 발생하여 반사색광이 미약하게 나타난다. 이런 반사색광은 두께, 굴절율, 층수, 입사광의 파장, 기판물질 등의 구조에 의한 반사광의 파장 영역을 제어할 수 있다. l층, 2층 구조에서 ${\lambda}s/{\lambda}$=1.0인 조건하에서 무반사시키면, 다른 영역에서 나온 반사광들이 색혼합된 반사색광을 얻을 수 있고, 3층 구조에서 ${\lambda}0/{\lambda}$가 $PI{\ll}1$, $P2{\gg}1$ 에서 무반사시키면 P1< ${\lambda}0/{\lambda}$
광원의 세기가 다른 조건하에서 눈의 시감효율은 추상체와 간상체에 의해 파장에 따라 2개의 함수로 이루어진다. 광자에 대한 추상체-간상체의 반응확률을 이용하여 $P({\lambda})=A{\cdot}e^{-({\lambda}-{\lambda}_0)^2/2W^2}$의 분포함수 수식을 유도하였다. 이 식은 파장에 따른 CIE의 눈의 시감효율 곡선에 잘 적용되며 상대 시감효율의 경우 photopic의 경우 A=106.4, ${\lambda}_0=559.2$, W=83.5이고 scotopic의 경우 A=99.3, ${\lambda}_0=502.6$, W=79.5의 값을 얻었다. 1m/W의 단위를 사용하는 시감효능 곡선에서는 photopic의 경우 $A=7.2{\times}10^4$, ${\lambda}_0=559.2$, W=86.5이고 scotopic의 경우 $A=1.6{\times}10^5$, ${\lambda}_0=502.6$, W=79.5의 값을 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.