• 제목/요약/키워드: LAMBDA

검색결과 2,546건 처리시간 0.029초

ON THE DIRECT PRODUCTS AND SUMS OF PRESHEAVES

  • PARK, WON-SUN
    • 호남수학학술지
    • /
    • 제1권1호
    • /
    • pp.21-25
    • /
    • 1979
  • Abelian군(群)의 presheaf에 관한 직적(直積)과 직화(直和)를 Category 입장에서 정의(定義)하고 presheaf $F_{\lambda}\;({\lambda}{\epsilon}{\Lambda})$들의 두 직적(直積)(또는 直和)은 서로 동형적(同型的) 관계(關係)에 있으며, 특히 ${\phi}:X{\rightarrow}Y$가 homeomorphism이라 하고 ${\phi}_*F$를 X상(上)의 presheaf F의 direct image이라 하면 (1) $({\phi}_*F, \;{\phi}_*(f_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$$({\phi}_*F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}}$의 직적(直積)일 때 오직 그때 한하여 $(F,\;(f_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$$(F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$의 직적(直積)이다. (2) $({\phi}_*F,\;{\phi}_*(l_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$$({\phi}_*F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}}$의 직화(直和)일 때 오직 그때 한하여 $(F,\;(l_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$$(F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$의 직화(直和)이다. Let $(F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$ be an indexed set of presheaves of abelian group on topological space X. We can define the cartesian product $$\prod_{{\lambda}{\epsilon}{\Lambda}}\;F_{\lambda}$$ of $(F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$ by $$(\prod_{{\lambda}{\epsilon}{\Lambda}}\;F_{\lambda})(U)=\prod_{{\lambda}{\epsilon}{\Lambda}}(F_{\lambda}(U))$$ for U open in X $${\rho}_v^u:\;(\prod_{{\lambda}{\epsilon}{\Lambda}}\;F_{\lambda})(U){\rightarrow}(\prod_{{\lambda}{\epsilon}{\Lambda}}\;F_{\lambda})(V)((s_{\lambda})_{{\lambda}{\epsilon}{\Lambda}}{\rightarrow}(_{\lambda}{\rho}_v^u(s_{\lambda}))_{{\lambda}{\epsilon}{\Lambda}})$$ for $V{\subseteq}U$ open in X where $_{\lambda}{\rho}^U_V$ is a restriction of $F_{\lambda}$, And we have natural presheaf morphisms ${\pi}_{\lambda}$ and ${\iota}_{\lambda}$ such that ${\pi}_{\lambda}(U):\;({\prod}_\;F_{\lambda})(U){\rightarrow}F_{\lambda}(U)((s_{\lambda})_{{\lambda}{\epsilon}{\Lambda}}{\rightarrow}s_{\lambda})$ ${\iota}_{\lambda}(U):\;F_{\lambda}(U){\rightarrow}({\prod}\;F_{\lambda})(U)(s_{\lambda}{\rightarrow}(o,o,{\cdots}\;{\cdots}o,s_{\lambda},o,{\cdots}\;{\cdots}o)$ for $(s_{\lambda}){\epsilon}{\prod}_{\lambda}\;F_{\lambda}(U)$ and $(s_{\lambda}){\epsilon}F_{\lambda}(U)$.

  • PDF

경험적인 방법에 의한 한반도 주변 해역에서 성분별 흡광계수 산출 알고리즘 개발에 관한 연구 (Development of Absorption Coefficients Estimation Algorithms for the Water Components by Empirical Method around Korean Waters)

  • 문정언;안유환;유주형;최중기
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2009년도 춘계학술대회 논문집
    • /
    • pp.280-285
    • /
    • 2009
  • 1998년 8월부터 2005년 6월까지 한반도 주변 해역에서 현장관측한 해수의 고유 광특성(IOPs)과 외형적 광특성(AOPs) 자료들을 이용하여 원격반사도$(R_{rs}(\lambda))$와 성분별 흡광계수의 총 합 $(\alpha(\lambda)=\alpha_w(\lambda)+\alpha_{ph}(\lambda)+\alpha_{ss}(\lambda)+\alpha_{dom}(\lambda))$의 상관관계를 분석하고, $R_{rs}(\lambda)$ 밴드비를 이용하여 흡광계수 산출 알고리즘을 개발하였다. 파장에 따른 $R_{rs}(\lambda)$와 총합 $\alpha(\lambda)$의 상관관계는 반비례적인 관계를 보였고, 파장 443 nm일 때 상관도$(R^2)$는 0.717이다. $\alpha_{ph}(\lambda)$ 산출알고리즘은 엽록소의 흡광과 관련된 파장 490 nm와 부유물의 산란과 관련된 파장 555 nm의 $R_{rs}(\lambda)$ 밴드비의 함수 형태로 구성하였고, 파장 443 nm일 때 RMS 값은 0.223이다. $\alpha_{ss}(\lambda)$$\alpha_{dom}(\lambda)$ 산출 알고리즘은 용존유기물의 흡광과 관련된 파장 412 nm와 부유물의 산란과 관련된 파장 555 nm의 $R_{rs}(\lambda)$ 밴드비의 함수 형태로 구성하였고, 파장 412 nm일 때 RMS 값은 각각 0.324와 0.230이다. $\alpha_{ph}(\lambda),\;\alpha_{ss}(\lambda),\;\alpha_{dom}(\lambda)$ 산출 알고리즘들은 대체적으로 현장값보다 높게 추정하였고 스펙트럼들은 잘 재현해냈다. 추후 이에 대한 개선과 알고리즘의 검보정이 요구된다.

  • PDF

Inversion-like and Major-like Statistics of an Ordered Partition of a Multiset

  • Choi, Seung-Il
    • Kyungpook Mathematical Journal
    • /
    • 제56권3호
    • /
    • pp.657-668
    • /
    • 2016
  • Given a partition ${\lambda}=({\lambda}_1,{\lambda}_2,{\ldots},{\lambda}_l)$ of a positive integer n, let Tab(${\lambda}$, k) be the set of all tabloids of shape ${\lambda}$ whose weights range over the set of all k-compositions of n and ${\mathcal{OP}}^k_{\lambda}_{rev}$ the set of all ordered partitions into k blocks of the multiset $\{1^{{\lambda}_l}2^{{\lambda}_{l-1}}{\cdots}l^{{\lambda}_1}\}$. In [2], Butler introduced an inversion-like statistic on Tab(${\lambda}$, k) to show that the rank-selected $M{\ddot{o}}bius$ invariant arising from the subgroup lattice of a finite abelian p-group of type ${\lambda}$ has nonnegative coefficients as a polynomial in p. In this paper, we introduce an inversion-like statistic on the set of ordered partitions of a multiset and construct an inversion-preserving bijection between Tab(${\lambda}$, k) and ${\mathcal{OP}}^k_{\hat{\lambda}}$. When k = 2, we also introduce a major-like statistic on Tab(${\lambda}$, 2) and study its connection to the inversion statistic due to Butler.

On the structure of discrete spectrum of the non-selfadjoint system of differential equations in the first order

  • Akin, Omer;Bairamov, Elgiz
    • 대한수학회지
    • /
    • 제32권3호
    • /
    • pp.401-413
    • /
    • 1995
  • This paper is concerned with the problem given below $$ (1.1) i\frac{dx}{du_1(x,\lambda)} + q1(x)u_2(x,\lambda) = \lambdau_1(x,\lambda) 0 \leq x < \infty - i\frac{dx}{du_2(x,\lambda)} + q2(x)u_1(x,\lambda) = \lambdau_2(x,\lambda), $$ $$ (2) u_2(0,\lambda) - hu_1(0,\lambda) = 0 $$ where $\lambda$ is a complex parameter and h is a non-zero complex number.

  • PDF

Near λ-lattices

  • Chajda, Ivan;Kolarik, M.
    • Kyungpook Mathematical Journal
    • /
    • 제47권2호
    • /
    • pp.283-294
    • /
    • 2007
  • By a near ${\lambda}$-lattice is meant an upper ${\lambda}$-semilattice where is defined a parti binary operation $x{\Lambda}y$ with respect to the induced order whenever $x$, $y$ has a common lower bound. Alternatively, a near ${\lambda}$-lattice can be described as an algebra with one ternary operation satisfying nine simple conditions. Hence, the class of near ${\lambda}$-lattices is a quasivariety. A ${\lambda}$-semilattice $\mathcal{A}=(A;{\vee})$ is said to have sectional (antitone) involutions if for each $a{\in}A$ there exists an (antitone) involution on [$a$, 1], where 1 is the greatest element of $\mathcal{A}$. If this antitone involution is a complementation, $\mathcal{A}$ is called an ortho ${\lambda}$-semilattice. We characterize these near ${\lambda}$-lattices by certain identities.

  • PDF

Global Far-UV Emission-line Images of the Vela Supernova Remnant

  • 김일중;선광일;민경욱
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.110.2-110.2
    • /
    • 2011
  • Nishikida et al. (2006) presented the first far-ultraviolet (FUV) em${\lambda}$ission-line images of the Vela supernova remnant (SNR) obtained with FIMS/SPEAR instrument. Those include C III ${\lambda}$977, O VI ${\lambda}{\lambda}$1032, 1038, Si IV+O IV] ${\lambda}{\lambda}$1393, 1403 (un-resolved), C IV ${\lambda}{\lambda}$1548, 1551 emission-line images. As a following work, we re-constructed these emission-line images using the new-version processed FIMS/SPEAR data. Additionally, we made N IV] ${\lambda}$1486, He II ${\lambda}$1640.5, O III] ${\lambda}{\lambda}$1661, 1666 emission-line images. The new-version images cover the whole region of the Vela SNR and show more resolved features than the old-version. We compare these FUV emission-line images with other wavelength (X-ray, optical, etc.) images obtained in previous studies.

  • PDF

THE TILTED CARATHÉODORY CLASS AND ITS APPLICATIONS

  • Wang, Li-Mei
    • 대한수학회지
    • /
    • 제49권4호
    • /
    • pp.671-686
    • /
    • 2012
  • This paper mainly deals with the tilted Carath$\acute{e}$odory class by angle ${\lambda}$ ${\in}$ ($-{\pi}/2$, ${\pi}/2$), denoted by $P{\lambda}$) an element of which maps the unit disc into the tilted right half-plane {<${\omega}$ : Re $e^{i{\lambda}}{\omega}$ > 0}. Firstly we will characterize $P{\lambda}$ from different aspects, for example by subordination and convolution. Then various estimates of functionals over $P{\lambda}$ are deduced by considering these over the extreme points of $P{\lambda}$ or the knowledge of functional analysis. Finally some subsets of analytic functions related to $P{\lambda}$ including close-to-convex functions with argument ${\lambda}$, ${\lambda}$-spirallike functions and analytic functions whose derivative is in $P{\lambda}$ are also considered as applications.

ON THE ANALOGS OF BERNOULLI AND EULER NUMBERS, RELATED IDENTITIES AND ZETA AND L-FUNCTIONS

  • Kim, Tae-Kyun;Rim, Seog-Hoon;Simsek, Yilmaz;Kim, Dae-Yeoul
    • 대한수학회지
    • /
    • 제45권2호
    • /
    • pp.435-453
    • /
    • 2008
  • In this paper, by using q-deformed bosonic p-adic integral, we give $\lambda$-Bernoulli numbers and polynomials, we prove Witt's type formula of $\lambda$-Bernoulli polynomials and Gauss multiplicative formula for $\lambda$-Bernoulli polynomials. By using derivative operator to the generating functions of $\lambda$-Bernoulli polynomials and generalized $\lambda$-Bernoulli numbers, we give Hurwitz type $\lambda$-zeta functions and Dirichlet's type $\lambda$-L-functions; which are interpolated $\lambda$-Bernoulli polynomials and generalized $\lambda$-Bernoulli numbers, respectively. We give generating function of $\lambda$-Bernoulli numbers with order r. By using Mellin transforms to their function, we prove relations between multiply zeta function and $\lambda$-Bernoulli polynomials and ordinary Bernoulli numbers of order r and $\lambda$-Bernoulli numbers, respectively. We also study on $\lambda$-Bernoulli numbers and polynomials in the space of locally constant. Moreover, we define $\lambda$-partial zeta function and interpolation function.

Expanding Generalized Hadamard Matrices over $G^m$ by Substituting Several Generalized Hadamard Matrices over G

  • No, Jong-Seon;Song, Hong-Yeop
    • Journal of Communications and Networks
    • /
    • 제3권4호
    • /
    • pp.361-364
    • /
    • 2001
  • Over an additive abelian group G of order g and for a given positive integer $\lambda$, a generalized Hadamard matrix GH(g, $\lambda$) is defined as a gλ$\times$gλ matrix[h(i, j)], where 1 $\leq i \leqg\lambda and 1 \leqj \leqg\lambda$, such that every element of G appears exactly $\lambd$atimes in the list h($i_1, 1) -h(i_2, 1), h(i_1, 2)-h(i_2, 2), …, h(i_1, g\lambda) -h(i_2, g\lambda), for any i_1\neqi_2$. In this paper, we propose a new method of expanding a GH(g^m, \lambda_1) = B = [B_{ij}] over G^m$ by replacing each of its m-tuple B_{ij} with B_{ij} + GH(g, $\lambda_2) where m = g\lambda_2. We may use g^m/\lambda_1 (not necessarily all distinct) GH(g, \lambda_2$)s for the substitution and the resulting matrix is defined over the group of order g.

  • PDF

BASICALLY DISCONNECTED COVERS OF THE EXTENSION κX OF A SPACE X

  • Kim, Chang Il
    • East Asian mathematical journal
    • /
    • 제29권1호
    • /
    • pp.83-89
    • /
    • 2013
  • Observing that every Tychonoff space X has a weakly Lindel$\ddot{o}$f extension ${\kappa}X$ and the minimal basically diconneted cover ${\Lambda}{\kappa}X$ of ${\kappa}X$ is weakly Lindel$\ddot{o}$f, we first show that ${\Lambda}_{{\kappa}X}:{\Lambda}{\kappa}X{\rightarrow}{\kappa}X$ is a $z^{\sharp}$-irreducible map and that ${\Lambda}{\beta}X={\beta}{\Lambda}{\kappa}X$. And we show that ${\kappa}{\Lambda}X={\Lambda}{\kappa}X$ if and only if ${\Lambda}^{\kappa}_X:{\kappa}{\Lambda}X{\rightarrow}{\kappa}X$ is an onto map and ${\beta}{\Lambda}X={\Lambda}{\beta}X$.