• Title/Summary/Keyword: LAGOON

Search Result 133, Processing Time 0.033 seconds

Anaerobic-aerobic granular system for high-strength wastewater treatment in lagoons

  • Hamza, Rania A.;Iorhemen, Oliver T.;Tay, Joo H.
    • Advances in environmental research
    • /
    • v.5 no.3
    • /
    • pp.169-178
    • /
    • 2016
  • This study aimed at determining the treatability of high-strength wastewater (chemical oxygen demand, COD>4000 mg/L) using combined anaerobic-aerobic granular sludge in lagoon systems. The lagoon systems were simulated in laboratory-scale aerated and non-aerated batch processes inoculated with dried granular microorganisms at a dose of 0.4 g/L. In the anaerobic batch, a removal efficiency of 25% was not attained until the 12th day. It took 14 days of aerobic operation to achieve sCOD removal efficiency of 94% at COD:N:P of 100:4:1. The best removal efficiency of sCOD (96%) was achieved in the sequential anaerobic-aerobic batch of 12 days and 2 days, respectively at COD:N:P ratio of 200:4:1. Sequential anaerobic-aerobic treatment can achieve efficient and cost effective treatment for high-strength wastewater in lagoon systems.

Abundance and Diversity of Microbial Communities in the Coastal Aquifers in Songji Lagoon, South Korea (송지호 해안 대수층 미생물 군집의 풍부도 및 다양성)

  • Jung-Yun Lee;Dong-Hun Kim;Woo-Hyun Jeon;Hee Sun Moon
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.5
    • /
    • pp.12-24
    • /
    • 2023
  • The Songji lagoon is brackish environment with a mixture of saline and fresh water, and the interaction of groundwater-lagoon water creates a physicochemical gradient. Although some studies have been conducted on the hydrological and geochemical characteristics of the Songji lagoon, microbial ecological studies have not yet been conducted. In this study, we investigated the effect of groundwater and surface water interaction on water quality as well as microbial community changes in the Songji Lagoon using 16S rRNA gene sequencing. Hydrochemical analyses show that samples were classified as 5 hydrochemical facies (HF) and hydrochemical facies evolution (HFE) revealed the intrusion phase was more dominant (57.9%) than the freshening phase (42.1%). Higher microbial diversity was found in freshwater in comparison to saline water samples. The microbial community at the phylum level shows the most dominance of Proteobacteria with an average of 37.3%, followed by Bacteroidota, Actinobacteria, and Patescibacteria. Heat map analyses of the top 18 genera showed that samples were clustered into 5 groups based on type, and Pseudoalteromonas could be used potential indicator for seawater intrusion.

The Characteristics of Fish Community in the Lagoon Hwajinpo, Korea (화진포호의 어류군집 특성)

  • Park, Seung-Chul;Choi, Jae-Seok;Choi, Eui-Yong;Jang, Young-Su;Lee, Kwang-Yeol;Choi, Jun-Kil
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.3
    • /
    • pp.449-458
    • /
    • 2007
  • Fish community and its temporal-spacial variation in the Lagoon Hwajinpo, Korea were seasonally investigated with different types of fishing gears from November, 2005 to August, 2006. Total 35.812 fishes caught during the period were belonged to 24 families 37 species. Dominant species was H. nipponensis(60.8%), T, hakonensis (19.8%), and K. punctatus (5.5%) ana these species were peripheral freshwater fish. Among 37 species, primary freshwater and seawater fish were 8 species (21.6%), respectively and peripheral freshwater fish were 21 species (56.8%). Total biomass of collected fish was 279.3kg, and biomass of each species was T. hakonensis 152.9 kg, H. nipponensis 40.0 kg, K. punctatus 31.4 kg and C. haematochelius 25.3 kg, respectively. Hence, productivity of the Lagoon Hwajinpo was much higher than those of inland reservoirs. The aspect of community classified by surveyed period was changed according to the 'Breaking-sandbar', but some of peripheral freshwater fish populations made stable community in their life cycle in the lagoon. In conclusion, the Lagoon Hwajinpo seems to be maintained more natural ecosystem better than other lagoons in Korea. Therefore, the findings provide consideration of the management and restoration for this lagoon and others through the continuous observation and monitoring in future.

Wastewater Utilization: A Place for Managed Wetlands - Review -

  • Humenik, F.J.;Szogi, A.A.;Hunt, P.G.;Broome, S.;Rice, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.629-632
    • /
    • 1999
  • Constructed wetlands are being used for the removal of nutrients from livestock wastewater. However, natural vegetation typically used in constructed wetlands does not have marketable value. As an alternative, agronomic plants grown under flooded or saturated soil conditions that promote denitrification can be used. Studies on constructed wetlands for swine wastewater were conducted in wetland cells that contained either natural wetland plants or a combination of soybeans and rice for two years with the objective of maximum nitrogen reduction to minimize the amount of land required for terminal treatment. Three systems, of two 3.6 by 33.5 m wetland cells connected in series were used; two systems each contained a different combination of emergent wetland vegetation: rush/bulrush (system 1) and bur-reed/cattail (system 2). The third system contained soybean (Glycine max) in saturated-soil-culture (SSC) in the first cell, and flooded rice (Oryza sativa) in the second cell. Nitrogen (N) loading rates of 3 and $10kg\;ha^{-1}\;day^{-1}$ were used in the first and second years, respectively. These loading rates were obtained by mixing swine lagoon liquid with fresh water before it was applied to the wetland. The nutrient removal efficiency was similar in the rush/bulrush, bur-reed/cattails and agronomic plant systems. Mean mass removal of N was 94 % at the loading rate of $3kg\;N\;ha^{-1}\;day^{-1}$ and decreased to 71% at the higher rate of $10kg\;N\;ha^{-1}\;day^{-1}$. The two years means for above-ground dry matter production for rush/bulrushes and bur-reed/cattails was l2 and $33Mg\;ha^{-1}$, respectively. Flooded rice yield was $4.5Mg\;ha^{-1}$ and soybean grown in saturation culture yielded $2.8Mg\;ha^{-1}$. Additionally, the performance of seven soybean cultivars using SSC in constructed wetlands with swine wastewater as the water source was evaluated for two years, The cultivar Young had the highest yield with 4.0 and $2.8Mg\;ha^{-1}$ in each year, This indicated that production of acceptable soybean yields in constructed wetlands seems feasible with SSC using swine lagoon liquid. Two microcosms studies were established to further investigate the management of constructed wetlands. In the first microcosm experiment, the effects of swine lagoon liquid on the growth of wetland plants at half (about 175 mg/l ammonia) and full strength (about 350 mg/l ammonia) was investigated. It was concluded that wetland plants can grow well in at least half strength lagoon liquid. In the second microcosm experiment, sequencing nitrification-wetland treatments was studied. When nitrified lagoon liquid was added in batch applications ($48kg\;N\;ha^{-1}\;day^{-1}$) to wetland microcosms the nitrogen removal rate was four to five times higher than when non-nitrified lagoon liquid was added. Wetland microcosms with plants were more effective than those with bare soil. These results suggest that vegetated wetlands with nitrification pretreatment are viable treatment systems for removal of large quantities of nitrogen from swine lagoon liquid.

Hydrogeological Characterization of Groundwater and Surface Water Interactions in Fresh-Saline Water Mixed Zone of the East Coast Lagoon Area, Korea (동해안 석호 담염수 혼합대에서 지하수와 지표수 상호작용의 수리지질학적 특성 평가)

  • Jeon, Woo-Hyun;Kim, Dong-Hun;Lee, Soo-Hyoung;Hwang, Seho;Moon, Hee Sun;Kim, Yongcheol
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.144-156
    • /
    • 2021
  • This study examined hydrogeological characteristics of groundwater and surface water interaction in the fresh-saline water mixed zone of East Coast lagoon area, Korea, using several technical approaches including hydrological, lithological, and isotopic methods. In addition, the fresh-saline water interface was evaluated using vertical electrical conductivity (EC) data. For this purpose, three monitoring wells (SJ-P1, SJ-P2, and SJ-P3) were installed across the Songji lagoon at depths of 7.4 to 9.0 m, and water level, EC, and temperature at the wells and in the lagoon (SJ-L1) were monitored using automatic transducers from August 1 to October 21, 2021. Isotopic composition of the groundwater, lagoon water, and sea water were also monitored in the mid-September, 2013. The mixing ratios calculated from oxygen and hydrogen isotopic composition decreased with increasing depth in the monitoring wells, indicating saline water intrusion. In the study area, the interaction of groundwater-surface water-sea water was evident, and residual salinity in the sedimentary layers created in the past marine environment showed disorderly characteristics. Moreover, the horizontal flow at the lagoon's edge was more dominant than the vertical flow.

Determining Groundwater-surface Water Interaction at Coastal Lagoons using Hydrogeochemical Tracers (수리화학적 환경 추적자를 이용한 강원도 석호지역에서의 지하수-지표수 상호작용에 대한 연구)

  • Dong-Hun Kim;Jung-Yun Lee;Soo Young Cho;Hee Sun Moon;Youn-Young Jung;Yejin Park;Yong Hwa Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.2
    • /
    • pp.1-11
    • /
    • 2023
  • Groundwater-surface water interaction was evaluated using water quality parameters (temperature and electrical conductivity), distributions of stable water isotopes (δ2H and δ 18O), and Rn-222 in lagoon water, groundwater, and seawater at three coastal lagoons (Songji (SJ), Youngrang (YR), and Sunpo (SP) Lagoon) in South Korea. From the results of composition and distributions of δ2H and δ18O, it was found that groundwater fraction of lagoon water in YR Lagoon (76%) was slightly higher than those of SJ (42%), and SP (63%) Lagoon. Based on Rn-222 mass balance model, groundwater discharge into SJ Lagoon in summer 2020 was estimated to be (3.2±1.1)×103 m3 day-1, which showed a similar or an order of magnitude higher than the results of previous studies conducted in coastal lagoons. This study can provide advanced techniques to evaluate groundwater-surface water interaction in coastal lagoons, wetlands, and lakes, and help to determine the effects of groundwater on coastal ecosystems.

Characterization of a Unique New Strain Named the NFRDI N°1 Rotifer Strain, a Brackish Brachionus Rotifer Collected from a South Korea Coastal Lagoon

  • Jung, Min-Min
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.333-337
    • /
    • 2011
  • A new and a unique Brachionus rotifer was found in Hwajinpo coastal lagoon in Gangwon Province, South Korea. This Brachionus certainly originated from the wild rather than from aquaculture stations because Hwajinpo coastal lagoon has been under rigorous control as a military protected area and therefore could not have been contaminated by aquaculture stations. The new strain was identified as Brachionus rotundiformis based upon its morphological characteristics. The parthenogenetic female of this new rotifer strain typically shows characters similar to those of B. rotundiformis, such as the pot shape of the body, rounded dorsal plate compared with flattened ventral plate, elliptical mictic egg, four frontal spines, six pointed occipital spines, non-nodal foot, two toes, trophi typical of the Brachionus genus with five uncus plates resembling comb teeth, one wide symmetrical manubrium and ramus, and no stiffened spine as is seen in freshwater Brachionus rotifers. Moreover, its lorica was rather small in size compared with other common rotifer strains that serve as live-food organisms (Guam, Thai, and Bali strains). This new and unique Korean brackish rotifer, a B. rotundiformis strain, was therefore named the National Fisheries Research and Development Institute (NFRDI) $N^{\circ}1$ rotifer strain.

Photosynthetic Activity of Epiphytic Algae in Embayment Reed Zone in a Lagoon Connected with Lake Biwa

  • Mitamura, Osamu;Tachibana, Junji;Ishida, Noriko;Seike, Yasushi;Choi, Jun-Kil
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.48-57
    • /
    • 2009
  • Primary production of epiphytic and planktonic algae in a shallow reed zone of a lagoon Nishinoko was investigated. Concentrations of nutrients varied widely horizontally and locally in the lagoon. It seems that the reed zone has a heterogeneous environment. The photosynthetic rates of epiphytic and planktonic algae were 7 to 14 mg C surface stem $m^{-2}hr^{-1}$ and 12 to $46mg\;Cm^{-3}hr^{-1}$, respectively. The areal primary production of epiphytic algae was estimated as 4 to $13mg\;Cm^{-2}hr^{-1}$ from the stem density of Phragmites and the water depth at each station. The production of phytoplankton, on the other hand, was 5 to $56mg\;Cm^{-2}hr^{-1}$. The contribution of epiphytic algae to total primary production averaged 53%, although the assimilation number was much lower than that of phytoplankton. The present results indicate that the epiphytic algae are one of the significant primary producers in the reed zone.