DOI QR코드

DOI QR Code

Anaerobic-aerobic granular system for high-strength wastewater treatment in lagoons

  • Hamza, Rania A. (Department of Civil Engineering, University of Calgary) ;
  • Iorhemen, Oliver T. (Department of Civil Engineering, University of Calgary) ;
  • Tay, Joo H. (Department of Civil Engineering, University of Calgary)
  • Received : 2016.06.01
  • Accepted : 2016.10.07
  • Published : 2016.09.25

Abstract

This study aimed at determining the treatability of high-strength wastewater (chemical oxygen demand, COD>4000 mg/L) using combined anaerobic-aerobic granular sludge in lagoon systems. The lagoon systems were simulated in laboratory-scale aerated and non-aerated batch processes inoculated with dried granular microorganisms at a dose of 0.4 g/L. In the anaerobic batch, a removal efficiency of 25% was not attained until the 12th day. It took 14 days of aerobic operation to achieve sCOD removal efficiency of 94% at COD:N:P of 100:4:1. The best removal efficiency of sCOD (96%) was achieved in the sequential anaerobic-aerobic batch of 12 days and 2 days, respectively at COD:N:P ratio of 200:4:1. Sequential anaerobic-aerobic treatment can achieve efficient and cost effective treatment for high-strength wastewater in lagoon systems.

Keywords

References

  1. Adav, S.S., Lee, D.-J., Show, K.-Y. and Tay, J.-H. (2008), "Aerobic granular sludge: Recent advances", Biotechnol. Adv., 26(5), 411-423. https://doi.org/10.1016/j.biotechadv.2008.05.002
  2. Adav, S.S., Lee, D.-J. and Tay, J.-H. (2008), "Extracellular polymeric substances and structural stability of aerobic granule", Water Res., 42(6-7), 1644-1650. https://doi.org/10.1016/j.watres.2007.10.013
  3. Arbeli, Z., Brenner, A. and Abeliovich, A. (2006), "Treatment of high-strength dairy wastewater in an anaerobic deep reservoir: Analysis of the methanogenic fermentation pathway and the rate-limiting step", Water Res., 40(19), 3653-3659. https://doi.org/10.1016/j.watres.2006.06.017
  4. Beun, J.J., Hendriks, A., van Loosdrecht, M.C.M., Morgenroth, E., Wilderer, P.A. and Heijnen, J.J. (1999), "Aerobic granulation in a sequencing batch reactor", Water Res., 33(10), 2283-2290. https://doi.org/10.1016/S0043-1354(98)00463-1
  5. Chan, Y.J., Chong, M.F. and Law, C.L. (2012), "An integrated anaerobic-aerobic bioreactor (IAAB) for the treatment of palm oil mill effluent: Start-up and steady state performance", Proc. Biochem., 47(3), 485-495. https://doi.org/10.1016/j.procbio.2011.12.005
  6. Chan, Y.J., Chong, M.F., Law, C.L. and Hassell, D.G. (2009), "A review on anaerobic-aerobic treatment of industrial and municipal wastewater", Chem. Eng. J., 155(1-2), 1-18. https://doi.org/10.1016/j.cej.2009.06.041
  7. De Baere, L., Devocht, M., Van Assche, P. and Verstraete, W. (1984), "Influence of high NaCl and NH4Cl salt levels on methanogenic associations", Water Res., 18(5), 543-548. https://doi.org/10.1016/0043-1354(84)90201-X
  8. Droste, R.L. (1997), Theory and practice of water and wastewater treatment, New York, J. Wiley.
  9. Ergüder, T.H. and Demirer, G.N. (2005), "Investigation of granulation of a mixture of suspended anaerobic and aerobic cultures under alternating anaerobic/microaerobic/aerobic conditions", Proc. Biochem., 40(12), 3732-3741. https://doi.org/10.1016/j.procbio.2005.05.005
  10. Frigon, J.-C., Breton, J., Bruneau, T., Moletta, R. and Guiot, S. (2009), "The treatment of cheese whey wastewater by sequential anaerobic and aerobic steps in a single digester at pilot scale", Bioresource Technol., 100(18), 4156-4163. https://doi.org/10.1016/j.biortech.2009.03.077
  11. Grady Jr, C.P.L., Daigger, G.T., Love, N.G. and Filipe, C.D.M. (2011), Biological wastewater treatment, CRC Press.
  12. Hamza, R.A., Iorhemen, O.T. and Tay, J.H. (2016), "Advances in biological systems for the treatment of high-strength wastewater", J. Water Proc. Eng., 10, 128-142. https://doi.org/10.1016/j.jwpe.2016.02.008
  13. Leitao, R.C., van Haandel, A.C., Zeeman, G. and Lettinga, G. (2006), "The effects of operational and environmental variations on anaerobic wastewater treatment systems: A review", Biores. Tech., 97(9), 1105-1118. https://doi.org/10.1016/j.biortech.2004.12.007
  14. Liu, Y. and Tay, J.-H. (2002), "The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge", Water Res., 36(7), 1653-1665. https://doi.org/10.1016/S0043-1354(01)00379-7
  15. Liu, Y. and Tay, J.-H. (2004), "State of the art of biogranulation technology for wastewater treatment", Biotech. Adv., 22(7), 533-563. https://doi.org/10.1016/j.biotechadv.2004.05.001
  16. Mara, D. (2003), "Waste stabilization ponds: time for agressive marketing", Seminario International sobre Metodos Naturales para el Tratamiento de Aguas Residuales. Universidad del Valle/ Instituto Canira, International Water Association: 65-67.
  17. Mara, D.D. (2004), Domestic wastewater treatment in developing countries, London, Sterling, VA, Earthscan Publications.
  18. Maszenan, A.M., Liu, Y. and Ng, W.J. (2011), "Bioremediation of wastewaters with recalcitrant organic compounds and metals by aerobic granules", Biotech. Adv., 29(1), 111-123. https://doi.org/10.1016/j.biotechadv.2010.09.004
  19. Metcalf & Eddy Inc., Tchobanoglous, G., Stensel, H.D., Tsuchihashi, R., Burton, F.L., Abu-Orf, M., Bowden, G. and Pfrang, W. (2014), Wastewater Engineering: Treatment & Resource Recovery, New York, MGraw-Hill.
  20. Moosavi, G.R., Mesdaghinia, A.R., Naddafi, K., Mahvi, A.H. and Nouri, J. (2005), "Feasibility of development and application of an up-flow anaerobic/aerobic fixed bed combined reactor to treat high strength wastewaters", J. Appl. Sci., 5(1), 169-171. https://doi.org/10.3923/jas.2005.169.171
  21. Muda, K., Aris, A., Salim, M.R. and Ibrahim, Z. (2013), "Sequential anaerobic-aerobic phase strategy using microbial granular sludge for textile wastewater treatment", Biomass now-sustainable growth and use, 231-264.
  22. Orupold, K., Tenno, T. and Henrysson, T. (2000), "Biological lagooning of phenols-containing oil shale ash heaps leachate", Water Res., 34(18), 4389-4396. https://doi.org/10.1016/S0043-1354(00)00210-4
  23. Rajbhandari, B.K. and Annachhatre, A.P. (2004), "Anaerobic ponds treatment of starch wastewater: case study in Thailand", Bioresource Technol., 95(2), 135-143. https://doi.org/10.1016/j.biortech.2004.01.017
  24. Rakkoed, A., Danteravanich, S. and Puetpaiboon, U. (1999), "Nitrogen removal in attached growth waste stabilization ponds of wastewater from a rubber factory", Water Sci. Technol., 40(1), 45-52. https://doi.org/10.1016/S0273-1223(99)00362-5
  25. Show, K.-Y., Lee, D.-J. and Tay, J.-H. (2012), "Aerobic granulation: Advances and challenges", Appl. Biochem. Biotechnol., 167(6), 1622-1640. https://doi.org/10.1007/s12010-012-9609-8
  26. Show, K.Y., Lee, D.J. and Tay, J.H. (2012), Anaerobic digestion of sewage sludge, Biological sludge minimization and biomaterials/bioenergy recovery technologies, eds., E. Paul and Y. Liu. Hoboken, NJ, John Wiley & Sons, 319-347.
  27. Shpiner, R., Vathi, S. and Stuckey, D.C. (2009), "Treatment of oil well "produced water" by waste stabilization ponds: Removal of heavy metals", Water Res., 43(17), 4258-4268. https://doi.org/10.1016/j.watres.2009.06.004
  28. Tay, J.-H., Liu, Q.-S. and Liu, Y. (2001), "Microscopic observation of aerobic granulationin sequential aerobic sludge blanket reactor", J. Appl. Microbiol., 91(1), 168-175. https://doi.org/10.1046/j.1365-2672.2001.01374.x
  29. Tay, J.-H., Liu, Y., Tay, S.-L. and Hung, Y.-T. (2009), Aerobic Granulation Technology, Advanced Biological Treatment Processes, eds., L. K. Wang, N. K. Shammas and Y.-T. Hung. New York, Humana Press, 9, 109-128.
  30. US EPA. (2002), Wastewater Technology Fact Sheet Anaerobic Lagoons, Retrieved Jan 6, 2016, from http://www3.epa.gov/npdes/pubs/alagoons.pdf.
  31. Uzal, N., Gokcay, C.F. and Demirer, G.N. (2003), "Sequential (anaerobic/aerobic) biological treatment of malt whisky wastewater", Proc. Biochem., 39(3), 279-286. https://doi.org/10.1016/S0032-9592(03)00071-2
  32. Yang, S.-F., Tay, J.-H. and Liu, Y. (2005), "Effect of substrate nitrogen/chemical oxygen demand ratio on the formation of aerobic granules", J. Environ. Eng., 131(1), 86-92. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:1(86)
  33. Yuzer, B., Akgul, D. and Mertoglu, B. (2012), "Effect of high ammonia concentration on uasb reactor treating sanitary landfill leachate", Fen Bilimleri Dergisi, 24(2), 59-67.

Cited by

  1. Approaches in Design of Laboratory-Scale UASB Reactors vol.8, pp.6, 2016, https://doi.org/10.3390/pr8060734
  2. The applications of ozone-based advanced oxidation processes for wastewater treatment: A review vol.9, pp.3, 2020, https://doi.org/10.12989/aer.2020.9.3.191
  3. A comprehensive review of the Fenton-based approaches focusing on landfill leachate treatment vol.10, pp.1, 2016, https://doi.org/10.12989/aer.2021.10.1.059
  4. Influence of Biopreparations on Soil and Crop Residue Properties, Traction Force of Machines in Shallow Tillage vol.11, pp.13, 2021, https://doi.org/10.3390/app11136018
  5. Depuration Performance of Aerated Tanks Simulating Lagoons to Treat Olive Oil Mill Wastewater under Different Airflow Rates, and Concentrations of Polyphenols and Nitrogen vol.8, pp.8, 2021, https://doi.org/10.3390/environments8080070
  6. A Combined System Using Lagoons and Constructed Wetlands for Swine Wastewater Treatment vol.13, pp.22, 2021, https://doi.org/10.3390/su132212390