• Title/Summary/Keyword: LAB/cAnN mice

Search Result 7, Processing Time 0.022 seconds

Studies on N-Ethyl-N-nitrosourea Mutagenesis in BALB/c Mice

  • Cho, Kyu-Hyuk;Cho, Jae-Woo;Song, Chang-Woo
    • Toxicological Research
    • /
    • v.24 no.1
    • /
    • pp.59-68
    • /
    • 2008
  • N-ethyl-N-nitrosoures (ENU) is effective in inducing hypermorphic mutation as well as hypomorphic and antimorphic mutations. Therefore, this mutagen is used to the production of mutant in the mice. In order to perform an effective ENU mutagenesis using BALB/cAnN mice, determination of optimal dosage and dosage regimen of ENU is necessary. And this study tried to develop a suitable screening method and searched for novel and various mutants as model animals in phenotypedriven ENU mutagenesis. We have carried out dosage regimen for mutagenizing dose of 200 mg/kg ENU in the BALB/c mice. Total screened mice were 30,133. As the results of Esaki and Cho's Phenotype Screening, we got 2,516 phenotypic and behavior abnormalities in $G_1,\;G_2\;and\;G_3$ mice. One hundred thirty five $G_1$ phenodeviants were tested for inheritance and 16 dominant mutants were discovered. Forty two recessive mutants were also found in tested 201 micropedigrees. Early-onset mutant mice included the dysmorphology of face, eye, tail, limb, skin, and foot and abnormal behavior like circling, swimming, head tossing, stiff-walking, high cholesterol level, and tremor etc. In this study we could effectively screen $G_3$ recessive mutants. The frequent and concise early-onset screening before weaning will be available for ENU mutagenesis.

Single-Cell Hemoprotein Diet Changes Adipose Tissue Distributions and Re-Shapes Gut Microbiota in High-Fat Diet-Induced Obese Mice

  • Seungki Lee;Ahyoung Choi;Kyung-Hoon Park;Youngjin Cho;Hyunjin Yoon;Pil Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.12
    • /
    • pp.1648-1656
    • /
    • 2023
  • We have previously observed that feeding with single-cell hemoprotein (heme-SCP) in dogs (1 g/day for 6 days) and broiler chickens (1 ppm for 32 days) increased the proportion of lactic acid bacteria in the gut while reducing their body weights by approximately 1~2%. To define the roles of heme-SCP in modulating body weight and gut microbiota, obese C57BL/6N mice were administered varied heme-SCP concentrations (0, 0.05, and 0.5% heme-SCP in high fat diet) for 28 days. The heme-SCP diet seemed to restrain weight gain till day 14, but the mice gained weight again later, showing no significant differences in weight. However, the heme-SCP-fed mice had stiffer and oilier bodies compared with those of the control mice, which had flabby bodies and dull coats. When mice were dissected at day 10, the obese mice fed with heme-SCP exhibited a reduction in subcutaneous fat with an increase in muscle mass. The effect of heme-SCP on the obesity-associated dyslipidemia tended to be corroborated by the blood parameters (triglyceride, total cholesterol, and C-reactive protein) at day 10, though the correlation was not clear at day 28. Notably, the heme-SCP diet altered gut microbiota, leading to the proliferation of known anti-obesity biomarkers such as Akkermansia, Alistipes, Oscillibacter, Ruminococcus, Roseburia, and Faecalibacterium. This study suggests the potential of heme-SCP as an anti-obesity supplement, which modulates serum biochemistry and gut microbiota in high-fat diet-induced obese mice.

Single Nucleotide Polymorphism in the Coding Region of Bovine Chemerin Gene and Their Associations with Carcass Traits in Japanese Black Cattle

Deficiency or activation of peroxisome proliferator-activated receptor α reduces the tissue concentrations of endogenously synthesized docosahexaenoic acid in C57BL/6J mice

  • Hsiao, Wen-Ting;Su, Hui-Min;Su, Kuan-Pin;Chen, Szu-Han;Wu, Hai-Ping;You, Yi-Ling;Fu, Ru-Huei;Chao, Pei-Min
    • Nutrition Research and Practice
    • /
    • v.13 no.4
    • /
    • pp.286-294
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Docosahexaenoic acid (DHA), an n-3 long chain polyunsaturated fatty acid (LCPUFA), is acquired by dietary intake or the in vivo conversion of ${\alpha}$-linolenic acid. Many enzymes participating in LCPUFA synthesis are regulated by peroxisome proliferator-activated receptor alpha ($PPAR{\alpha}$). Therefore, it was hypothesized that the tissue accretion of endogenously synthesized DHA could be modified by $PPAR{\alpha}$. MATERIALS/METHODS: The tissue DHA concentrations and mRNA levels of genes participating in DHA biosynthesis were compared among $PPAR{\alpha}$ homozygous (KO), heterozygous (HZ), and wild type (WT) mice (Exp I), and between WT mice treated with clofibrate ($PPAR{\alpha}$ agonist) or those not treated (Exp II). In ExpII, the expression levels of the proteins associated with DHA function in the brain cortex and retina were also measured. An n3-PUFA depleted/replenished regimen was applied to mitigate the confounding effects of maternal DHA. RESULTS: $PPAR{\alpha}$ ablation reduced the hepatic Acox, Fads1, and Fads2 mRNA levels, as well as the DHA concentration in the liver, but not in the brain cortex. In contrast, $PPAR{\alpha}$ activation increased hepatic Acox, Fads1, Fads2, and Elovl5 mRNA levels, but reduced the DHA concentrations in the liver, retina, and phospholipid of brain cortex, and decreased mRNA and protein levels of the brain-derived neurotrophic factor in brain cortex. CONCLUSIONS: LCPUFA enzyme expression was altered by $PPAR{\alpha}$. Either $PPAR{\alpha}$ deficiency or activation-decreased tissue DHA concentration is a stimulus for further studies to determine the functional significance.

Activity-guided Purification of N-benzyl-N-methyldecan-1-amine from Garlic and Its Antitumor Activity against CT-26 Colorectal Carcinoma in BALB/C Mice (활성추적분리법에 의해서 순수분리한 마늘 N-benzyl-N-methyldecan-1-amine이 CT-26 세포주 이식 BALB/C mice의 항암효과)

  • Seetharaman, Rajasekar;Choi, Seong Mi;Guo, Lu;Cui, Zheng Wei;Otgonbayar, Duuriimaa;Park, Ju Ha;Kwon, Young-Seok;Kwak, Jung Ho;Kwon, Young Hee;Min, Ji Hyun;Kang, Jum Soon;Choi, Young Whan
    • Journal of Life Science
    • /
    • v.29 no.10
    • /
    • pp.1062-1070
    • /
    • 2019
  • A components of garlic (Allium sativum) have anti-proliferative effects against various types of cancer. We aimed to investigate the capacity of garlic compounds to anti-tumor on a various cancer cell lines. Fractionation of garlic extract, guided by antiproliferative activity against human gastric cancer (AGS) cells, has resulted in the isolation of N-benzyl-N-methyldecan-1-amine (NBNMA). We investigated the effect of newly isolated NBNMA from garlic cloves on the inhibition of the growth of CT-26, AGS, HepG2, HCT-116, MCF7, B16F10, and Sarcoma-180 cells for in vitro and CT-26 colon carcinoma cells in vivo. NBNMA exhibited an antiproliferative effect in CT-26 cells by apoptotic cell death. NBNMA exhibited down-regulation of anti-apoptotic Bcl-2 proteins and up-regulation of apoptotic Bad protein expression in western blot analyses. In addition, NBNMA meagre activated caspase 3 and caspase 9, initiator caspases of the extrinsic and intrinsic pathways of apoptosis. NBNMA treatment at a dose of 10 mg/kg for 21 days in experimental mice implanted with tumors resulted in significant reduction of the tumor weight (43%). NBNMA exhibited both in vitro and in vivo anticancer activity. These results indicate that NBNMA has promising potential to become a novel anticancer agent from garlic cloves for the treatment of colon carcinoma cancer.

Policosanol Reduces Blood Cholesterol Levels by Inhibiting Sterol Regulatory Element-binding Proteins-1c and Fatty Acid Synthase (Sterol regulatory element-binding proteins-1c와 지방산 합성효소의 억제를 통한 폴리코사놀의 혈중 콜레스테롤 감소)

  • Min Jung Park;Byeong Min An;Dongjun Lee;Ji Myung Choi;Yung Hyun Choi;Bo Sun Joo
    • Journal of Life Science
    • /
    • v.33 no.4
    • /
    • pp.315-324
    • /
    • 2023
  • The underlying action of policosanol in lowering cholesterol level has not yet been clearly elucidated. Several recent studies have suggested that sterol regulatory element-binding proteins (SREBP)-1c play a role in the regulation of cholesterol synthesis via the fatty acid synthesis pathway. To date, no study has evaluated the effects of policosanol on SREBP-1c-mediated fatty acid synthesis. Therefore, this study aimed to investigate whether the SREBP-1c-mediated fatty acid biosynthetic pathway is associated with the cholesterol-lowering effects of policosanol. Seven-week-old C57BL/6 male mice were randomly divided into 7 groups (n=7 per group) and treated for 8 weeks as follows: 1) normal diet (normal control), 2) high-fat diet (HFD), 3) HFD+ethanol (Pol-0), 4) HFD+policosanol 1 mg/kg (Pol-1), 5) HFD+policosanol 2 mg/kg (Pol-2), 6) HFD+policosanol 4 mg/kg (Pol-4), and 7) HFD+simvastatin 50 ㎍/kg (positive control). Policosanol and simvastatin were administered at the same time every day while maintaining the HFD. Body weight and food intake were measured weekly for 8 weeks. After 8 weeks, serum cholesterol levels were measured, histological analysis was carried out, and the expressions of SREBP-1c and fatty acid synthase (FAS) in the liver tissues were examined. Policosanol reduced body weight and the amount of food intake in a dose-dependent manner. Serum cholesterol levels were significantly lowered in the Pol-1 and Pol-4 groups. The expression of SREBP-1c and FAS was also significantly decreased in the Pol-4 group. These results suggest that the cholesterol-lowering effects of policosanol can occur due to the inhibition of the expression of SREBP-1c and FAS.

A Monoclonal Anti-peptide Antibody against $\beta$2-adrenergic Receptor Which Specifically Binds [$^{3}H$] dihydroalprenolol

  • Shin, Chan Young;Noh, Min Su;Lee, Sang Derk;Lee, Sang Bong;Ko, Kwang Ho
    • Biomolecules & Therapeutics
    • /
    • v.3 no.4
    • /
    • pp.266-272
    • /
    • 1995
  • The analysis of membrane receptors for hormones and neurotransmitters has progressed considerably by pharmacological and biochemical means and more recently through the use of specific antibodies. To generate and characterize a moloclonal antibody against $\beta$-adrenergic receptor, a synthetic $\beta$2-adrenergic receptor peptide (Phe-Gly-Asn-Phe-Trp-Cys-Phe-Trp-Thr-Ser-lle-Asp-Val-Leu) which may comprise part of $\beta$-adrenergic receptor ligand binding pocket was coupled to Keyhole Limpet Hemocyanin (KLH) and used as an immunogen. Male BALB/C mice were immunized with this antigen and the immunized spleen was fused with myeloma SP2/0-Ag14 cells to produce monoclonal antibodies. Two clones were obtained but one of monoclonal antibodies, mAb5G09, was used throughout in this study because the other clone, mAb5All showed weak immunoreactivity against KLH as well. The mouse monoclonal antibody mAb5G09 produced in this study showed immunoreactivity to peptide-KLH conjugates and also to human A43l cells and guinea pig lung $\beta$2-adrenergic receptor as revealed by ELISA and western blot. In the course of determination of the effects of mAb5G09 on $\beta$-receptor ligand binding, it was observed that mAb5G09 specifically bound $\beta$-adrenergic radioligand [$^3$H]dihydroalprenolol (DHA) with a dissociation constant (Kd) of 60 nM. The [$^3$H]DHA binding activity of mAb5G09 had characteristics of immunoglobulins and the binding activity was not observed in the control anti-KLH monoclonal antibody. The monoclonal antibody, mAb5G09 produced in this study may provide useful models for the study of the structure of receptor binding sites.

  • PDF