• Title/Summary/Keyword: L-type $Ca^{2+}$ channel

Search Result 91, Processing Time 0.02 seconds

Modulation of L-type $Ca^{2+}$ Channel Currents by Various Protein Kinase Activators and Inhibitors in Rat Clonal Pituitary $GH_3$ Cell Line

  • Bae, Young-Min;Baek, Hye-Jung;Cho, Ha-Na;Earm, Yung-E;Ho, Won-Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.2
    • /
    • pp.139-146
    • /
    • 2001
  • L-type $Ca^{2+}$ channels play an important role in regulating cytosolic $Ca^{2+}$ and thereby regulating hormone secretions in neuroendocrine cells. Since hormone secretions are also regulated by various kinds of protein kinases, we investigated the role of some kinase activators and inhibitors in the regulation of the L-type $Ca^{2+}$ channel currents in rat pituitary $GH_3$ cells using the patch-clamp technique. Phorbol 12,13-dibutyrate (PDBu), a protein kinase C (PKC) activator, and vanadate, a protein tyrosine phosphatase (PTP) inhibitor, increased the $Ba^{2+}$ current through the L-type $Ca^{2+}$ channels. In contrast, bisindolylmaleimide I (BIM I), a PKC inhibitor, and genistein, a protein tyrosine kinase (PTK) inhibitor, suppressed the $Ba^{2+}$ currents. Forskolin, an adenylate cyclase activator, and isobutyl methylxanthine (IBMX), a non-specific phosphodiesterase inhibitor, reduced $Ba^{2+}$ currents. The above results show that the L-type $Ca^{2+}$ channels are activated by PKC and PTK, and inhibited by elevation of cyclic nucleotides such as cAMP. From these results, it is suggested that the regulation of hormone secretion by various kinase activity in $GH_3$ cells may be attributable, at least in part, to their effect on L-type $Ca^{2+}$ channels.

  • PDF

Voltage Dependent N Type Calcium Channel in Mouse Egg Fertilization

  • Eum, Jin Hee;Park, Miseon;Yoon, Jung Ah;Yoon, Sook Young
    • Development and Reproduction
    • /
    • v.24 no.4
    • /
    • pp.297-306
    • /
    • 2020
  • Repetitive changes in the intracellular calcium concentration ([Ca2+]i) triggers egg activation, including cortical granule exocytosis, resumption of second meiosis, block to polyspermy, and initiating embryonic development. [Ca2+]i oscillations that continue for several hours, are required for the early events of egg activation and possibly connected to further development to the blastocyst stage. The sources of Ca2+ ion elevation during [Ca2+]i oscillations are Ca2+ release from endoplasmic reticulum through inositol 1,4,5 tri-phosphate receptor and Ca2+ ion influx through Ca2+ channel on the plasma membrane. Ca2+ channels have been characterized into voltage-dependent Ca2+ channels (VDCCs), ligand-gated Ca2+ channel, and leak-channel. VDCCs expressed on muscle cell or neuron is specified into L, T, N, P, Q, and R type VDCs by their activation threshold or their sensitivity to peptide toxins isolated from cone snails and spiders. The present study was aimed to investigate the localization pattern of N and P/Q type voltage-dependent calcium channels in mouse eggs and the role in fertilization. [Ca2+]i oscillation was observed in a Ca2+ contained medium with sperm factor or adenophostin A injection but disappeared in Ca2+ free medium. Ca2+ influx was decreased by Lat A. N-VDCC specific inhibitor, ω-Conotoxin CVIIA induced abnormal [Ca2+]i oscillation profiles in SrCl2 treatment. N or P/Q type VDC were distributed on the plasma membrane in cortical cluster form, not in the cytoplasm. Ca2+ influx is essential for [Ca2+]i oscillation during mammalian fertilization. This Ca2+ influx might be controlled through the N or P/Q type VDCCs. Abnormal VDCCs expression of eggs could be tested in fertilization failure or low fertilization eggs in subfertility women.

Low-Voltage Activated $Ca^{2+}$ Current Carried via T-Type Channels in the Mouse Egg

  • Yang, Young-Sun;Park, Young-Geun;Cho, Soo-Wan;Cheong, Seung-Jin;Haan, Jae-Hee;Park, Choon-Ok;Hong, Seong-Geun
    • The Korean Journal of Physiology
    • /
    • v.27 no.1
    • /
    • pp.107-114
    • /
    • 1993
  • Most of voltage operated $Ca^{2+}$ channels can be divided into three types (T-, N-, and L-type), according to the electrical and pharmacological properties. Their distribution is closely related to cell specific functions. Properties of the voltage activated $Ca^{2+}$ current in mouse eggs were examined to classify channel types and to deduce the function by using whole cell voltage clamp technique. $Ca^{2+}$ currents appeared below -40 mV and reached a maximum at -15 mV (half maximum was -31 mV), then decayed rapidly (inactivation time constant ${\tau}=28.2{\pm}9.59$ ms at -10 mV within 50 ms after the onset of step depolarization. Activation and inactivation of the $Ca^{2+}$ channel was steeply dependent on voltage, in a relatively low range of $-70\;mV{\sim}-10 mV,$ half maximum of activation was -31 mV and that of inactivation was -39 mV, respectively. This current was not decreased significantly by nifedipine, a specific dihydropyridine $Ca^{2+}$ channel blocker in the range of $1\;{\mu}M\;to\;100{\mu}M.$ The inhibitory effect of $Ni^{2+}\;on\;Ca^{2+}$ current was greater than that of $Cd^{2+}.$ The conductance of $Ba^{2+}$ through the channel was equal to or lower than that of $Ca^{2+}$ These results implied that $Ca^{2+}$ current activated at a lower voltage in the mouse egg is carried via a $Ca^{2+}$ channel with similar properties that of the T-type channel.

  • PDF

Protective Effect of Fangchinoline on Cyanide-Induced Neuro-toxicity in Cultured Rat Cerebellar Granule Cells

  • Cho, Soon-Ok;Seong, Yeon-Hee
    • Archives of Pharmacal Research
    • /
    • v.25 no.3
    • /
    • pp.349-356
    • /
    • 2002
  • The present study was performed to examine the effect of fangchinoline, a bis- benzylisoquinoline alkaloid, which exhibits the characteristics of a $Ca^{2+}$ channel blocker, on cyanide-induced neurotoxicity using cultured rat cerebellar granule neurons. NaCN produced a concentration-dependent reduction of cell viability, which was blocked by MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, verapamil, L-type$Ca^{2+}$channel blocker, and L-NAME, a nitric oxide synthase inhibitor. Pretreatment with fangchinoline over a concentration range of 0.1 to 10 $\mu$M significantly decreased the NaCN-induced neuronal cell death, glutamate release into medium, and elevation of $[Ca^{2+}]_i$ and oxidants generation. These results suggest that fangchinoline may mitigate the harmful effects of cyanide-induced neuronal cell death by interfering with $[Ca^{2+}]_i$influx, due to its function as a $Ca^{2+}$ channel blocker, and then by inhibiting glutamate release and oxidants generation.

The Influences of G Proteins, $Ca^{2+}$, and $K^+$ Channels on Electrical Field Stimulation in Cat Esophageal Smooth Muscle

  • Park, Jun-Hong;Kim, Hyun-Sik;Park, Sun-Young;Im, Chae-Uk;Jeong, Ji-Hoon;Kim, In-Kyeom;Sohn, Uy-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.5
    • /
    • pp.393-400
    • /
    • 2009
  • NO released by myenteric neurons controls the off contraction induced by electrical field stimulation (EFS) in distal esophageal smooth muscle, but in the presence of nitric oxide synthase (NOS) inhibitor, L-NAME, contraction by EFS occurs at the same time. The authors investigated the intracellular signaling pathways related with G protein and ionic channel EFS-induced contraction using cat esophageal muscles. EFS-induced contractions were significantly suppressed by tetrodotoxin ($1\;{\mu}M$) and atropine ($1\;{\mu}M$). Furthermore, nimodipine inhibited both on and off contractions by EFS in a concentration dependent meaner. The characteristics of 'on' and 'off contraction and the effects of G-proteins, phospholipase, and $K^+$ channel on EFS-induced contraction in smooth muscle were also investigated. Pertussis toxin (PTX, a $G_i$ inactivator) attenuated both EFS-induced contractions. Cholera toxin (CTX, $G_s$ inactivator) also decreased the amplitudes of EFS-induced off and on contractions. However, phospholipase inhibitors did not affect these contractions. Pinacidil (a $K^+$ channel opener) decreased these contractions, and tetraethylammonium (TEA, ${K^+}_{Ca}$ channel blocker) increased them. These results suggest that EFS-induced on and off contractions can be mediated by the activations Gi or Gs proteins, and that L-type $Ca^{2+}$ channel may be activated by G-protein ${\alpha}$ subunits. Furthermore, ${K^+}_{Ca^-}$ channel involve in the depolarization of esophageal smooth muscle. Further studies are required to characterize the physiological regulation of $Ca^{2+}$ channel and to investigate the effects of other $K^+$ channels on EFS-induced on and off contractions.

Involvement of Ca2+ and K+ channels in the action of NO on gastric circular muscle (기니피그 유문부 윤상근의 자발적 수축 및 서파에 대한 nitric oxide의 억제적 작용과 Ca2+ 및 K+ 통로의 관련성)

  • Kim, Tae-wan;La, Jun-ho;Yang, Il-suk
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.4
    • /
    • pp.485-495
    • /
    • 2001
  • It was investigated whether $Ca^{2+}$ and $K^+$ channels were involved in the inhibitory action of nitric oxide (NO) on the contractile and slow wave activity of guinea pig gastric antral circular muscle. The gastric antral circular muscle showed spontaneous phasic contraction and slow wave. NO donors, 3-morpholinosydnonimine hydrochloride (SIN-1, $0.01{\sim}100{\mu}M$) and S-nitroso-L-cysteine (CysNO, $0.001{\sim}10{\mu}M$), reduced not only the amplitude of phasic contraction but also that of slow wave in a concentration-dependent manner. Both the perfusion of $Ca^{2+}$-free solution and the administration of $Ni^{2+}$, a nonselective $Ca^{2+}$ channel blocker, reduced the phasic contraction as well as the amplitude and frequency of the slow wave. The effects of these treatments were similar to those of NO donors. Nifedipine ($10{\mu}M$), a specific L-type $Ca^{2+}$ channel blocker, abolished the phasic contraction and remarkably reduced the plateau of slow wave but had no profound effect on the upstroke of slow wave. In the whole-cell patch clamp mode, CysNO shifted the steady-state activation curve for L-type $Ca^{2+}$ current to the right and the steady-state inactivation curve to the left. Pretreatment of various $K^+$ channel blockers such as tetraethylammonium (1 mM), 4-aminopyridine (0.5 mM), glibenclamide (10 mM), apamin ($0.1{\mu}M$), and iberiotoxin ($0.1{\mu}M$) did not affect the inhibitory action of SIN-1. These results suggest that NO donors suppress mechanical and electrical activity of guinea pig gastric antral circular muscle by inhibition of L-type $Ca^{2+}$ channel rather than by activation of $K^+$ channels.

  • PDF

Role of T-type $Ca^{2+}$ Channels in the Spontaneous Phasic Contraction of Pregnant Rat Uterine Smooth Muscle

  • Lee, Si-Eun;Ahn, Duck-Sun;Lee, Young-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.241-249
    • /
    • 2009
  • Although extracellular $Ca^{2+}$ entry through the voltage-dependent $Ca^{2+}$ channels plays an important role in the spontaneous phasic contractions of the pregnant rat myometrium, the role of the T-type $Ca^{2+}$ channels has yet to be fully identified. The aim of this study was to investigate the role of the T-type $Ca^{2+}$ channel in the spontaneous phasic contractions of the rat myometrium. Spontaneous phasic contractions and $[Ca^{2+}]_i$ were measured simultaneously in the longitudinal strips of female Sprague-Dawley rats late in their pregnancy (on day 18 ${\sim}$ 20 of gestation: term=22 days). The expression of T-type $Ca^{2+}$ channel mRNAs or protein levels was measured. Cumulative addition of low concentrations (< 1 ${\mu}M$) of nifedipine, a L-type $Ca^{2+}$ channel blocker, produced a decrease in the amplitude of the spontaneous $Ca^{2+}$ transients and contractions with no significant change in frequency. The mRNAs and proteins encoding two subunits (${\alpha}$ 1G, ${\alpha}$ 1H) of the T-type $Ca^{2+}$ channels were expressed in longitudinal muscle layer of rat myometrium. Cumulative addition of mibefradil, NNC 55-0396 or nickel induced a concentration-dependent inhibition of the amplitude and frequency of the spontaneous $Ca^{2+}$ transients and contractions. Mibefradil, NNC 55-0396 or nickel also attenuated the slope of rising phase of spontaneous $Ca^{2+}$ transients consistent with the reduction of the frequency. It is concluded that T-type $Ca^{2+}$ channels are expressed in the pregnant rat myometrium and may play a key role for the regulation of the frequency of spontaneous phasic contractions.

[$Ca^{2+}-induced$ $Ca^{2+}$ Release from Sarcoplasmic Reticulum Negatively Regulates Myocytic ANP Release in Beating Rabbit Atria

  • Li, Dan;Quan, He Xiu;Wen, Jin-Fu;Jin, Jing-Yu;Park, Sung-Hun;Kim, Sun-Young;Kim, Sung-Zoo;Cho, Kyung-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.2
    • /
    • pp.87-94
    • /
    • 2005
  • It is not clear whether $Ca^{2+}-induced$ $Ca^{2+}$ release from the sarcoplasmic reticulum (SR) is involved in the regulation of atrial natriuretic peptide (ANP) release. Previously, we have shown that nifedipine increased ANP release, indicating that $Ca^{2+}$ entry via voltage-gated L-type $Ca^{2+}$ channel activation decreases ANP release. The purpose of the present study was two-fold: to define the role of SR $Ca^{2+}$ release in the regulation of ANP release and whether $Ca^{2+}$ entry via L-type $Ca^{2+}$ channel is prerequisite for the SR-related effect on ANP release. Experiments were performed in perfused beating rabbit atria. Ryanodine, an inhibitor of SR $Ca^{2+}$ release, increased atrial myocytic ANP release ($8.69{\pm}3.05$, $19.55{\pm}1.09$, $27.31{\pm}3.51$, and $18.91{\pm}4.76$% for 1, 2, 3, and $6{\mu}M$ ryanodine, respectively; all P<0.01) with concomitant decrease in atrial stroke volume and pulse pressure in a dose-dependent manner. In the presence of thapsigargin, an inhibitor of SR $Ca^{2+}$ pump, ryanodine-induced increase in ANP release was not observed. Thapsigargin attenuated ryanodine-induced decrease in atrial dynamic changes. Blockade of L-type $Ca^{2+}$ channel with nifedipine abolished ryanodine-induced increase in ANP release ($0.69{\pm}5.58$% vs. $27.31{\pm}3.51$%; P<0.001). In the presence of thapsigargin and ryanodine, nifedipine increased ANP release and decreased atrial dynamics. These data suggest that $Ca^{2+}$-induced $Ca^{2+}$ release from the SR is inversely involved in the regulation of atrial myocytic ANP release.

Relationship of the Signal Transduction-mediated Proteins and Enzymes to Contractility and Plasticity in Skeletal Muscles (골격근의 수축과 가소성에 대한 신호전달-매개 단백질 및 관련 효소의 상관성)

  • Kim, Jung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.19 no.4
    • /
    • pp.1-14
    • /
    • 2007
  • Background: It is generally accepted that skeletal muscle contraction is triggered by nerve impulse and intracellular $Ca^{2+}\;([Ca^{2+}]_i)$ released from intracellular $Ca^{2+}$ stores such as sarcoplasmic reticulum (SR). Specifically, this process, called excitation-contraction (E-C) coupling, takes place at intracellular junctions between the plasma membrane, the transverse (T) tubule L-type $Ca^{2+}$ channel (dihydropyridine-sensitive L-rype $Ca^{2+}$ channel, DHPR, also called tetrads), and the SR $Ca^{2+}$ release channel (ryanodine-sensitive $Ca^{2+}$ release channel, RyR, also called feet) of internal $Ca^{2+}$ stores in skeletal muscle cells. Furthermore, it has been reported that the $Ca^{2+-}$ dependent and -independent contraction determine the expression of skeletal muscle genes, thus providing a mechanism for tightly coupling the extent of muscle contraction to regulation of muscle plasticity-related excitation-transcription (E-T) coupling. Purpose: Expression and activity of plasticity-associated enzymes in gastrocnemius muscle strips have not been well studied, however. Methods: Therefore, in this study the expression and phosphorylation of E-C and E-T coupling-related mediators such as protein kinases, ROS(reactive oxygen species)- and apoptosis-related substances, and others in gastrocnemius muscles from rats was examined. Results: I found that expression and activity of MAPKs (mitogen-activated protein kinases, ERK1/2, p38MAPK, and SAPK/JNK), apoptotic proteins (cleaved caspase-3, cytochrome c, Ref-1, Bad), small GTP-binding proteins (RhoA and Cdc42), actin-binding protein (cofilin), PKC (protein kinase C) and $Ca^{2+}$ channel (transient receptor potential channel 6, TRPC6) was observed in rat gastrocnemius muscle strips. Conclusion: These results suggest that MAPKs, ROS- and apoptosis-related enzymes, cytoskeleton-regulated proteins, and $Ca^{2+}$ channel may in part functionally import in E-C and E-T coupling from rat skeletal muscles.

  • PDF

Changes in Intracellular $Ca^{2+}$ Concentration Induced by L-Type $Ca^{2+}$ Channel Current in Guinea-Pig Gastric Myocytes

  • Kim, Ki-Whan
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1997.07a
    • /
    • pp.17-17
    • /
    • 1997
  • We investigated the relationship between the voltage-operated calcium channel current and the corresponding [Ca$^{2+}$]i change (Ca$^{2+}$-transient) in guinea-pig gastric myocyte. Fluorescence microspectroscopy was combined with conventional whole-cell patch clamp technique and fura-2 (80 $\mu$M) was added into the CsCl-rich pipette solution.(omitted)

  • PDF