Sym-5 ## Changes in Intracellular Ca²⁺ Concentration Induced by L-Type Ca²⁺ Channel Current in Guinea-Pig Gastric Myocytes Ki Whan Kim Department of Physiology & Biophysics, Seoul National University College of Medicine28 Yongon-Dong, Chongno-Gu, Seoul 110-799, Korea We investigated the relationship between the voltage-operated calcium channel current and the corresponding [Ca²⁺]i change (Ca²⁺in guinea-pig gastric mvocvte. microspectroscopy was combined with conventional whole-cell patch clamp technique and fura-2 (80 µ M) was added into the CsCl-rich pipette solution. Step depolarization to 0 mV induced inward Ca²⁺current (I_{Ca}) and concomitantly raised [Ca²⁺]i. Both changes were abolished by nicardipine, an L-type calcium channel antagonist, and the voltage dependence of Ca2+ transient was similar to the current-voltage relation of Ica. Peak Ca2+ transient increased with the increment of pulse duration up to 900ms and reached a steady state stimulation. The calculated fast Ca²⁺ buffering longer capacity(B-value), determined as the ratio of the time integral of ICa divided by the amplitude of Ca²⁺ transient was usually above 100. The time course of the measured increase in [Ca2+]i followed the time-integrated Ica. Treatment with caffeine and ryanodine decreased both Ca²⁺ transient and I_{Ca} but the changes in B-values were not statistically significant. However, cyclopiazonic acid (CPA, an inhibitor for Ca2+-ATPase in SR membrane) significantly decreased the B-value. With K-rich pipette solution, fast transient oscillatory outward currents $(I_{K(Ca)})$ were induced by depolarization with Ca²⁺transient. I_{K(Ca)} were sensitively suppressed by CPA while the change in the peak amplitude of Ca2+ transient was small. Above results suggest that the Ca2+ transient is tightly coupled to Ica and SR of guinea-pig gastric myocyte play a role as a Ca²⁺ buffer barrier rather than as a source of Ca2+ via Ca2+ induced Ca2+ release process in Ca²⁺ transient.