• Title/Summary/Keyword: L-shape

Search Result 1,859, Processing Time 0.022 seconds

L-system Tree with Particle Attributes (파티클 속성을 사용한 L-시스템 트리)

  • Jou, Wou-Seok;Park, Hyun-Min;Bahng, Soon-Jung
    • The KIPS Transactions:PartA
    • /
    • v.9A no.4
    • /
    • pp.589-594
    • /
    • 2002
  • In computer graphics, L-system is primarily used for the production of such natural shapes as flowers, trees, and grass. It is possible by iteratively applying the theory of multiple-reduction-copy-machine to an arbitrary initial shape. The purpose of this paper is to modify the shape of ordinary L-system trees so that more realistic trees can be generated. Instead of applying simple iterative function system of the L-system, we regard each branch of the trees as a living thing, and endow them with corresponding attributes. Such branch attributes as lifetime, growth speed, shape variation, attraction by environment are known to belong to the attributes of the particle system. We presented modeling methods as hypotheses for each of the attributes based on parameters, iud shown the resulting diverse tree shapes.

Design of HDD Load/Unload Suspension Using Shape Memory Alloy (형상기억합금을 이용한 HDD Load/Unload 서스펜션의 설계)

  • Lim S. C.;Park Y. P.;Park N, C.;Choi S, B.
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.163-170
    • /
    • 2005
  • In this work, we propose a new type of HDD Load/unload (L/UL) suspension featuring shape memory alloy (SMA). The mechanical and thermal properties of the SMA film with respect to the material phase states are experimentally estimated and the SMA film is carefully integrated to the suspension. In order to obtain the desirable dynamic characteristics of the suspension during L/UL process, the design parameters of the SMA film such as geometric properties are determined by considering the vibration modes of the suspension related to the L/UL performance. After analyzing the modal characteristics of the proposed suspension, L/UL performance is evaluated through L/UL simulation by observing the vibration motion and minimum flying height of the slider during L/UL process.

  • PDF

Design of HDD Load/Unload Suspension Using Shape Memory Alloy (형상기억합금을 이용한 HDD Load/Unload 서스펜션의 설계)

  • Lim, Soo-Cheol;Park, Young-Pil;Park, No-Cheol;Choi, Seung-Bok
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.71-78
    • /
    • 2006
  • In this work, we propose a new type of HDD Load/Unload(L/UL) suspension featuring shape memory alloy(SMA). The mechanical and thermal properties of the SMA film with respect to the material phase states are experimentally estimated and the SMA film is carefully integrated to the suspension. In order to obtain the desirable dynamic characteristics of the suspension during L/UL process, the design parameters of the SMA film such as geometric properties are determined by considering the vibration modes of the suspension related to the L/UL performance. After analyzing the modal characteristics of the proposed suspension, L/UL performance is evaluated through L/UL simulation by observing the vibration motion and minimum flying height of the slider during L/UL process.

  • PDF

DESIGN OF PARALLEL COOLING CHANNELS IN A PLASTIC INJECTION MOLD (사출 금형의 병렬 냉각 채널 설계 방법)

  • Kim, H.S.;Jung, H.K.;Han, B.Y.;Kim, Y.M.;Park, H.K.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.93-98
    • /
    • 2012
  • The injection molding process is suitable for manufacturing complicated plastic products. As the customer request higher quality products increase, realization of the precise dimensional and shape controls is getting more important. For this purpose it is important to obtain uniform cooling procedure over the whole surface of the high temperature molded plastic. Failure to this may lead to different shrinkage speed, internal stresses and unwanted shape deformations. It is necessary to distribute coolant flow rates to the main channel and to the sub-channels properly to insure uniform cooling process when there are parallel cooling channels. In this study, three-dimensional turbulent flow simulations for representative parallel cooling channels were performed. To insure the intended flow rate to each sub-channels, various shape designs for the channel system were investigated. The results show that as the Reynolds number increases the effect of shape design is more profound. Through the proper flow distribution, uniform cooling effects would be expected.

Experimental Study on the Compressive Strength of yLRC Composite Columns (yLRC 합성기둥의 압축강도에 관한 실험 연구)

  • Kim, Hyung Geun;Kim, Myeong Han;Cho, Nam Gyu;Kim, Sang Seup;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.545-552
    • /
    • 2009
  • An experimental study was performed on the yLRC composite column. Its external surface was manufactured with y-shape steel sheets and L-shape steel angles, and concrete was poured inside in the field. This composite column has improved the section capacity due to the composite action of steel and concrete, and provides good efficiency in reducing the terms of construction works because of its abridged formworks. The stub column specimens (three small and three large specimens) were tested through concentrical axial loading, and the effect of the width-to-thickness ratio of the steel angle on the column axial strength was examined. The axial strength and behavior of the composite columns were analyzed, and a formula for predicting the axial load capacity was proposed.

Self-control of high rise building L-shape in plan considering soil structure interaction

  • Farghaly, A.A.
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.229-249
    • /
    • 2017
  • A new technique to mitigate irregular buildings with soil structure interaction (SSI) effect subjected to critical seismic waves is presented. The L-shape in plan irregular building for various reasons was selected, subjected to seismic a load which is a big problem for structural design especially without separation gap. The L-shape in plan building with different dimensions was chosen to study, with different rectangularity ratios and various soil kinds, to show the effect of the irregular building on the seismic response. A 3D building subjected to critical earthquake was analyzed by structural analysis program (SAP2000) fixed and with SSI (three types of soils were analyzed, soft, medium and hard soils) to find their effect on top displacement, base shear, and base torsion. The straining actions were appointed and the treatment of the effect of irregular shape under critical earthquake was made by using tuned mass damper (TMD) with different configurations with SSI and without. The study improve the success of using TMDs to mitigate the effect of critical earthquake on irregular building for both cases of study as fixed base and raft foundation (SSI) with different TMDs parameters and configurations. Torsion occurs when the L-shape in plan building subjected to earthquake which may be caused harmful damage. TMDs parameters which give the most effective efficiency in the earthquake duration must be defined, that will mitigate these effects. The parameters of TMDs were studied with structure for different rectangularity ratios and soil types, with different TMD configurations. Nonlinear time history analysis is carried out by SAP2000 with El Centro earthquake wave. The numerical results of the parametric study help in understanding the seismic behavior of L-shape in plan building with TMDs mitigation system.

Effects of the Welding Parameters on the Weld Shape in Nd:YAG Laser Welding of STS 304L (STS 304L의 Nd:YAG 레이저 용접에서 용접조건이 용접부 형상에 미치는 영향)

  • 이형근;석한길;한현수;박울재;홍순복
    • Journal of Welding and Joining
    • /
    • v.22 no.1
    • /
    • pp.58-64
    • /
    • 2004
  • The control of the weld bead shape is important in laser welding of the small parts. The effects of laser welding parameters on the weld bead shape in the pulsed Nd:YAG laser welding of STS 304L material were investigated. Shielding gas type, flow rate, pumping voltage, pulse frequency, pulse width, focal position and overlap distance were selected as laser welding parameters. Experiments were designed and conducted using the Taguchi method which was a statistical experimental method. The weld bead width, penetration, area and aspect ratio were measured and analysed as the weld bead shape properties and the welding parameters were optimized to maximize the weld aspect ratio. Weld aspect ratio were greatly affected by the pulse width, pumping voltage and pulse frequency, and somewhat by the overlap distance, and little by the shielding gas type, flow rate and focal position. A confirmation experiment were conducted using the optimized welding parameters.

Analysis of 2-D Potential Problem with L-shape Domain by p-Convergent Boundary Element Method (p-수렴 경계요소법에 의한 L-형 영역을 갖는 2차원 포텐셜 문제 해석)

  • Woo, Kwang-Sung;Jo, Jun-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.117-124
    • /
    • 2009
  • The p-convergent boundary element method has been proposed to analyze two-dimensional potential problem on the basis of high order Legendre shape functions that have different property comparing with the shape functions in conventional boundary element method. The location of nodes corresponding to high order shape function are not defined along the boundary, called by nodeless node, similar to the p-convergent finite element method. As the order of shape function increases, the collocation point method is used to solve linear simultaneous equations. The collocation patterns of p-convergent boundary element method consist of non-symmetric hierarchial or symmetric non-hierarchical. As the order of shape function increases, the number of collocation point increases. The singular integral that appears in p-convergent boundary element has been calculated by special numeric quadrature technique and semi-analytical integration technique. The L-shape domain problem including singularity in the vicinity of reentrant comer is analyzed and the numerical results show that the relative error is smaller than $10^{-2}%$ range as compared with other results in literatures. In case of same condition, the symmetric p-collocation point pattern shows high accuracy of solution.

Evaluation of Economic L/W Ratio and the Best Shape of Baffle in Clearwell by Using CFD (전산유체를 활용한 정수지 최적 도류벽 형태 및 경제적인 장폭비 산정)

  • Cho, Young-Man;Roh, Jae-Soon;Bin, Jae-Hoon;Kim, Tae-Kyun;Choi, Young-June
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.6
    • /
    • pp.432-438
    • /
    • 2011
  • We need to make the standard of the best baffle shape and L/W ratio of clearwell due to insufficient disinfection in short L/W ratio and uneconomic design in long L/W ratio. The objectives of this research were to evaluate the best shape of baffle and economic L/W ratio in the all sorts of shape and size by using computational fluid dynamics. In the results of this research, the baffle with smaller number of turning flow is more beneficial for hydraulic efficiency. So, even if the same shape and structure, baffle should be designed as smaller number in turning flow. The best shape of baffle is ZigZag type (model 2) and the worst shape is Distributed types (model 4). The ZigZag type can reduce number of baffle about 67% than that of the Distributed types. In the ZigZag type, economic L/W ratio is 30~50. If L/W ratio exceed over 50, it is not economic because construction costs greatly increase and an increasing rate of $T_{10}/T$ is very small.

AERODYNAMIC CHARACTERISTICS OF NACA64-418 AIRFOIL WITH BLUNT TRAILING EDGE ACCORDING TO THE SHAPE OF TRAILING EDGE (뒷전 두께를 갖는 NACA64-418 익형의 꼬리형상에 따른 공력특성)

  • Yoo, H.S.;Lee, J.C.
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.94-99
    • /
    • 2014
  • The aerodynamic performance of a modified NACA64-418 with blunt trailing edges of irregular shape was investigated. As the trailing edge of the airfoil was thickened, the drag of the airfoil was increased due to development of a re-circulation bubble in the wake region. To reduce the drag of the airfoil with a blunt trailing edge, the optimum shape of the trailing edge for a modified NACA64-418 was investigated. The numerical results showed that the drag of the protruding shape was much more decreased than that of the retreating shape, but the lift was almost the same regardless of shape. In addition, the pitching moment of the modified NACA64-418 with a protruding sharp trailing edge was the smallest at the given angle of attack.