• Title/Summary/Keyword: L-gram

Search Result 675, Processing Time 0.035 seconds

Whole genome sequence analysis of Ligilactobacillus agilis C7 isolated from pig feces revealed three bacteriocin gene clusters

  • Jeong Min, Yoo;Remilyn M., Mendoza;In-Chan, Hwang;Dae-Kyung, Kang
    • Journal of Animal Science and Technology
    • /
    • v.64 no.5
    • /
    • pp.1008-1011
    • /
    • 2022
  • We here report the whole genome sequence of Ligilactobacillus agilis C7 with anti-listerial activity, which was isolated from pig feces. The genome size of L. agilis C7 (~ 3.0 Mb) is relatively larger compared with other L. agilis strains. L. agilis C7 carries three bacteriocin gene clusters encoding garvicin Q, salivaricin A, and Blp family class II bacteriocin. Garvicin Q and salivaricin A are reported to be active against Listeria monocytogenes and Micrococcus luteus, respectively, as well as against other Gram-positive bacteria. Meanwhile, the bacteriocin encoded in the blp cassette was shown to be active against pneumococci, mediating intraspecies competition. This report highlights the potential of L. agilis C7 for the production of bacteriocins inhibiting pathogenic bacteria.

A Study on Microbial Pollution of Indoor Air at Elderly Care Facilities (노인요양시설의 실내공기 중 미생물 오염에 관한 연구)

  • Kim, Sang-Ha;Kim, Young-Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2485-2491
    • /
    • 2009
  • Culture was performed by using Sheep Blood Agar Plate (BAP, Asan Pharmaceutical) and Sabouraud Dextrose Ager (SDA, Asan Pharmaceutical) along with air $IDEAL^{TM}$ (Biomerieux), which is a microbe interceptor based on inertial impaction interception, in order to investigate bioaerosol in indoor and outdoor air at five elderly care facilities in a metropolis and an urban-rural consolidated city for two months from April 1 to May 31, 2007. From the culture followed by isolation and identification, the following conclusions were drawn. 1. As for the general isolation of microbes in each facility, care center S had the largest amount of microbes (263 cfu/$m^3$) isolated in a 300L room, followed by care center U having 123 cfu/$m^3$ isolated. 2. As for the number of bacteria isolated from a medium intercepting 300 L indoor, the largest amount of other unidentified or non-pathogenic Gram positive cocci (321 cfu/$m^3$) was isolated and most of the other Gram positive cocci were CNS (Coagulase Negative Staphylococcus). 3. As for the number of fungi isolated from a medium intercepting 300 L in a room, the largest number of Aspergillus spp. (66) was isolated, followed by Mucor spp. (62 cfu/$m^3$), Penicillium spp. (53 cfu/$m^3$), Alternaria spp. (50), and other unidentified or non-pathogenic fungi (42 cfu/$m^3$). 4. As for the rate of indoor and outdoor pollution, the average number of interceptions was all larger indoor than outdoor; the research differentiating the amount of air into 300 L and 500 L demonstrated that the larger amount of air led to more bacteria, making no great variation in the species.

Antimicrobial activities of Lindera obtusiloba Blume and Zanthoxylum piperitum DC extracts (생강나무(Lindera obtusiloba Blume)와 초피나무(Zanthoxylum piperitum DC) 추출물의 항균활성)

  • Kim, Se-Hun;Do, Jung-Sun;Chung, Hyun-Jung
    • Food Science and Preservation
    • /
    • v.21 no.3
    • /
    • pp.427-433
    • /
    • 2014
  • Ethanol and hot water extracts were prepared from Lindera obtusiloba Blume (LO) and Zanthoxylum piperitum DC (ZP) and used to evaluate their antimicrobial activities and thermal stability against six foodborne pathogens (3 gram-positive and 3 gram-negative bacteria). The antimicrobial activities were assessed using the agar diffusion method, and the thermal stabilities of extracts were examined after heat treatment at 60, 70, 80, and $100^{\circ}C$ for 10 min. The zones of inhibition by the LO extract or the ZP extract of the tested microorganisms were in the range of 21-30 mm and 19-25 mm, respectively, at 100 mg/mL concentrations. The 60% ethanol extract and the hot water extracts from LO showed the strongest antimicrobial effects against MRSA and Staphylococcus aurues, respectively. For the extract from ZP, the strongest antimicrobial effect was shown against S. aurues by 60% ethanol, and the weakest antimicrobial effect was shown against E. coli by the hot water extracts. The ZP extracts showed that the gram-positive bacteria were more sensitive than gram-negative bacteria. For the thermal stability of the extracts, the antimicrobial effects stabilized after heat treatment. Overall, the data suggest that the extracts have a potential for application in various food products for which a natural antimicrobial additive is desired.

Bactericidal Efficacy of Non-thermal DBD Plasma on Staphylococcus aureus and Escherichia coli (비열 유전체장벽방전 플라즈마의 포도상구균 및 대장균 살균효과)

  • Kim, Keyyoung;Paik, Namwon;Kim, Yonghee;Yoo, Kwanho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.1
    • /
    • pp.61-79
    • /
    • 2018
  • Objectives: The objective of this study was to examine the effect of non-thermal dielectric barrier discharge(DBD) plasma on decontamination of Staphylococcus aureus(S. aureus) and Escherichia coli(E. coli) as common pathogens. Methods: This experiment was carried out in a chamber($0.64m^3$)designed by the authors. The plasma was continuously generated by a non-thermal DBD plasma generator(Model TB-300, Shinyoung Air tech, Korea). Suspensions of S. aureus and E. coli of 0.5 McFarland standard($1.5{\times}10^8CFU/mL$) were prepared using a Densi-Check photometer(bio $M{\acute{e}}rieux$, France). The suspensions were diluted1:1000 in sterile PBS solutions(approximately$10^{4-5}CFU/mL$) and inoculated on tryptic soy agar(TSA) in Petri dishes. The Petri dishes(80mm internal diameter)were exposed to the non -thermal DBD plasma in the chamber. Results: The results showed that 95% of S. aureus colonies were killed after a six-hour exposure to the DBD plasma. In the case of E. coli, it took two hours to kill 100% of the colonies. The gram-negative E. coli had a greater reduction than the gram-positive S. aureus. This difference may be due to the structure of their cell membranes. The thickness of gram-positive bacteria is greater than that of gram-negative bacteria. The S. aureus is more resistant to DBD plasma exposures than is E. coli. It should be noted that average concentrations of ozone, a byproduct of the DBD plasma generator, were monitored throughout the experiment and the results were well below the criteria, 50 ppb, recommended by the Korean Ministry of the Environment. Thus, non-thermal DBD plasma is deemed safe for use in hospital and public facilities. Conclusions: There was evidence that non-thermal DBD plasma can effectively kill S. aureus and E. coli. The results indicate that DBD plasma technology can greatly contribute to the control of infections in hospitals and other public and private facilities.

DPPH Radical Scavenging Effect and Antimicrobial Activities of Some Herbal Extracts (주요 허브 추출물의 항산화성 및 항균활성)

  • Choi, In-Young;Song, Young-Ju;Lee, Wang-Hyu
    • Horticultural Science & Technology
    • /
    • v.28 no.5
    • /
    • pp.871-876
    • /
    • 2010
  • Seven native and four introduced herbs namely $Thymus$ $quinquecostatus$, $Chrysanthemum$ $zawadskii$ var. $latilobum$, $Rosmarinus$ $officinalis$, etc. were selected for analysis of the DPPH radical scavenging and anti-microbial activity of their extracts. These perennial herbs are classified as $Labiatae$ and $Compositae$ except for $Saururus$ $chinensis$ and can be propagated through seedling and cuttage. These edible herbs are used as medicinal as well as ornamental plants. Their extract has electron donating ability which ranges from 69.7 to 78.7% for native herbs and 67.4 to 75.4% for introduced herbs. Native herbs have higher (3.54%) average DPPH radical scavenging than introduced herbs. In native herbs, maximum DPPH radical scavenging activity was observed in $Agastache$ $rugosa$ (78.7%) followed by $Saururus$ $chinensis$ while $Chamaemelum$ $nobile$ showed highest activity among the introduced herbs. Many herbs viz. $Saururus$ $chinensis$, $Chrysanthemum$ $zawadskii$ var. $latilobum$ and $Solidago$ $virga-aurea$ var. $gigantean$ showed excellent anti-microbial activity against gram positive $Enterococcus$ $faecalis$, maximum (80.0%) by $Saururus$ $chinensis$. Other herbs viz. $Solidago$ $virga-aurea$ var. $gigantea$, $Chrysanthemum$ $zawadskii$ var. $latilobum$, $Salvia$Salvia $plebeia$, $Chrysanthemum$ $indicum$, $Rosmarinus$ $officinalis$, $Chamaemelum$ $nobile$ and $Lavandula$ $stoechas$ showed anti-microbial activity against gram negative $Citrobacter$ $freundii$. Especially, the inhibition of colony growth of $Citrobacter$ $freundii$ was highest in the extract of $Chrysanthemum$ $zawadskii$ var. $latilobum$, and $Chamaemelum$ $nobile$.

Isolation and Characterization of Antilisterial Lactic Acid Bacteria from Kimchi

  • Kim, Jo-Min;Kim, Ki-Hwan;Kim, Song-Yi;Park, Young-Seo;Seo, Min-Jae;Yoon, Sung-Sik
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.503-508
    • /
    • 2005
  • Screening for antilisterial activity was performed in about three thousand isolates of lactic acid bacteria (LAB) from Chinese cabbage kimchi, and finally based on the relatively stronger antilisterial activities eight bacterial strains were selected. The bacteria were further characterized in terms of their tolerance to artificial gastric juice, pH 2.5, bile salts (0.3% oxgall), and to the different NaCl concentrations. Of the isolates, YK005 was especially investigated for its physiological characteristics due to its inhibitory activity against gram-positive Listeria monocytogenes as well as gram-negative Escherichia coli O157:H7, as they have been constantly reported to be resistant against bacteriocins produced by a number of LAB strains. YK005 was found to be rod-shaped, $3.8\;{\mu}m$ long ${\times}\;0.5\;{\mu}m$ wide, non-sporeforming, non-motile, catalase-negative, and produced gas from glucose (heterolactic). Based on the biochemical data obtained by API 50 CHL medium, the isolate was tentatively identified as Lactobacillus brevis. To validate the result obtained by the biochemical identification, rRNA-based PCR experiments using a pair of species-specific primers for L. brevis were conducted and a single band of 1400 bp was observed, which strongly indicated that YK005 belongs to L. brevis. The LAB isolates are potentially exploited as human probiotic organisms and are employed to control some food-borne pathogens like L. monocytogenes.

Kinetic Study of the Anaerobic Digestion of Swine Manure at Mesophilic Temperature: A Lab Scale Batch Operation

  • Kafle, Gopi Krishna;Kim, Sang-Hun
    • Journal of Biosystems Engineering
    • /
    • v.37 no.4
    • /
    • pp.233-244
    • /
    • 2012
  • Purpose: The kinetic evaluation was performed for swine manure (SM) degradation and biogas generation. Methods: The SM was anaerobically digested using batch digesters at feed to inoculum ratio (F/I) of 1.0 under mesophilic conditions ($36.5^{\circ}C$). The specific gas yield was expressed in terms of gram total chemical oxygen demand (mL/g TCOD added) and gram volatile solids added (mL/g VS added) and their effectiveness was discussed. The biogas and methane production were predicted using first order kinetic model and the modified Gompertz model. The critical hydraulic retention time for biomass washout was determined using Chen and Hashimoto model. Results: The biogas and methane yield from SM was 346 and 274 mL/ TCOD added, respectively after 100 days of digestion. The average methane content in the biogas produced from SM was 79% and $H_2S$ concentration was in the range of 3000-4108 ppm. It took around 32-47 days for 80-90% of biogas recovery and the TCOD removal from SM was calculated to be 85%. When the specific biogas and methane yield from SM (with very high TVFA concentration) was expressed in terms of oven dried volatile solids (VS) basis, the gas yield was found to be over estimated. The difference in the measured and predicted gas yield was in the range of 1.2-1.5% when using first order kinetic model and 0.1% when using modified Gompertz model. The effective time for biogas production ($T_{Ef}$) from SM was calculated to be in the range of 30-45 days and the critical hydraulic retention time ($HRT_{Critical}$) for biomass wash out was found to be 9.5 days. Conclusions: The modified Gompertz model could be better in predicting biogas and methane production from SM. The HRT greater than 10 days is recommended for continuous digesters using SM as feedstock.

Antioxidant Activity and Antimicrobial Effect for Foodborne Pathogens from Extract and Fractions of Sanguisorba officinalis L. (지유 추출물 및 분획물의 항산화 활성과 식중독 원인균에 대한 항균활성)

  • Seo, Go Eun;Kim, Sun Min;Pyo, Byoung Sik;Yang, Sun A
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.4
    • /
    • pp.303-308
    • /
    • 2016
  • Background: This study aimed to investigate the antioxidat and antimicrobial activities of the methanol extract and its fractions prepared from the roots of Sanguisorba officinalis L. Methods and Results: The antioxidant activities were compared by evaluating the DPPH radical and nitric oxide (NO) scavenging ability. Measurement of DPPH radical scavenging ability showed that the $SC_{50}$ values of the ethyl acetate fraction was $3.85{\mu}g/m{\ell}$. The ethyl acetate fraction exhibited the most effective DPPH radical scavenging ability compared with the other samples. As for the NO scavenging ability, at all tested concentrations, the ethyl acetate fraction showed a higher scavenging activity than that of the extract and other fractions. These results are related to the total phenolic compound and flavonoid contents of the ethyl acetate fraction. Antimicrobial activity against foodborne pathogens was investigated using the disc diffusion assay. The ethyl acetate fraction showed the highest antimicrobial activity against gram-positive Staphylococcus aureus and Bacillus cereus. However, the chloroform fraction had a higher antimicrobial activity against gram-negative Vibrio vulnificus than that of the extract and other fractions. Conclusions: The results show that the ethyl acetate fraction had a higher antioxidant as well as antimicrobial activity, than did the other samples. Therefore, the ethyl acetate fraction has potential application in the food industry.

In vitro Characterization of Bacteriocin Produced by Lactic Acid Bacteria Isolated from Nem Chua, a Traditional Vietnamese Fermented Pork

  • Pilasombut, Komkhae;Rumjuankiat, Kittaporn;Ngamyeesoon, Nualphan;Duy, Le Nguyen Doan
    • Food Science of Animal Resources
    • /
    • v.35 no.4
    • /
    • pp.473-478
    • /
    • 2015
  • The aim of this study was to screen and In vitro characterize the properties of bacteriocin produced by lactic acid bacteria isolated from Vietnamese fermented pork (Nem chua). One hundred and fifty LAB were isolated from ten samples of Nem chua and screened for bacteriocin-producing lactic acid bacteria. Antimicrobial activity of bacteriocin was carried out by spot on lawn method against both gram positive and gram negative bacteria. One isolate, assigned as KL-1, produced bacteriocin and showed inhibitory activity against Lactobacillus sakei, Leuconostoc mesenteroides and Enterococcus faecalis. To characterize the bacteriocin-producing strain, optimum temperature, incubation period for maximum bacteriocin production and identification of bacteriocin-producing strain were determined. It was found that the optimum cultivation temperature of the strain to produce the maximum bacteriocin activity (12,800 AU/mL) was obtained at 30℃. Meanwhile, bacteriocin production at 6,400 AU/mL was found when culturing the strain at 37℃ and 42℃. The isolate KL-1 was identified as L. plantarum. Antimicrobial activity of cell-free supernatant was completely inhibited by proteolytic enzyme of trypsin, alpha-chymotrypsin and proteinase K. Bacteriocin activity was stable at high temperature up to 100℃ for 10 min and at 4℃ storage for 2 d. However, the longer heating at 100℃ and 4℃ storage, its activity was reduced.

Antibacterial Activity of Lactobacillus sakei BKl9 against Fish Pathogenic Bacteria (Lactobacillus sakei BK19의 어류 병원성 세균에 대한 항균활성)

  • 양병규;이제희;허문수
    • Korean Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.56-61
    • /
    • 2003
  • The purpose of the present study was to screen the effective of lactic acid bacteria (LAB), as probiotics which are able to protect bacterial fish diseases and investigate their characteristics. Twenty strains of lactic acid bacteria were isolated from fish intestine. fermented fish foods and kimchis. These bacteria were screened for antagonistic activity against fish pathogenic bacteria. Seven tested LAB strains were able to inhibit the fish pathogenic bacteria, including Vibrio anguillarum, Edwardsiella tarda and Streptococcus sp. Of the probiotic candidates, BK19 strain which from fermented pollack viscera indicated the largest inhibition activity. This particular probiotic bacteria was identified and named as Lactobacillus sakei BK19. In the scanning electron microscope observation, L. sakei BK19 supernatant treated V.anguillarum cell wall had been destroyed incubate after 3 hr.