• 제목/요약/키워드: L-amino acid decarboxylase

Search Result 21, Processing Time 0.025 seconds

Inhibition of Aromatic L-Amino Acid Decarboxylase (AADC) by Some Phenolic Compounds from Medicinal Plants (천연 페놀성 화합물들의 방향족 아미노산 탈탄산효소 저해작용)

  • Ryu, Shi-Yong;Han, Yong-Nam;Han, Byung-Hoon
    • YAKHAK HOEJI
    • /
    • v.38 no.6
    • /
    • pp.791-794
    • /
    • 1994
  • Sixteen kinds of naturally occurring phenolic compounds including 5 stilbenes, 7 flavonoids and 4 anthraquinones were examined in the inhibitory activity against rat liver AADC(aromatic L-amino acid decarboxylase) in vitro, using 5-hydroxytryptophan as a substrate. Three hydroxystilbenes, resveratrol 1, rhapontigenin 3 and piceatanol 5, which were known to be monoamine oxidase A inhibitors, exhibited a significant inhibition against AADC($IC_{50}$=20, 8 and $5\;{\mu}M$, respectively). By the comparison of the activity of each phenolic compound, it was suggested that the 3',4'-dihydroxyphenyl group of stilbenes or flavones was the best pharmacophore for the AADC inhibitory activity.

  • PDF

Effects of Liriodenine on Dopamine Biosynthesis in PC12 Cells (Liriodenine이 PC12 세포중의 Dopamine 생합성에 미치는 영향)

  • Jin, Chun-Mei;Lee, Jae-Joon;Yin, Shou-Yu;Kim, Yu-Mi;Kim, Young-Kyoon;Rhu, Shi-Yong;Lee, Myung-Koo
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.1 s.132
    • /
    • pp.55-59
    • /
    • 2003
  • The effects of liriodenine, an aporphine isoquinoline alkaloid, on dopamine content in PCl2 cells were investigated. Treatment of PC12 cells with liriodenine decreased dopamine content in a dose-dependent manner (33.6% inhibition at $10\;{\mu}M$ for 12 h). The $IC_{50}$ in value of liriodenine was $8.4\;{\mu}M$. Dopamine content decreased at 3 h and reached a minimal level at 12 h after the exposure to liriodenine. Under these conditions, the activities of tyrosine hydroxylase and aromatic L-amino acid decarboxylase were also inhibited at $10\;{\mu}M$ of liriodenine by 10.1% and 20.2% relative to control, respectively. In addition, liriodenine inhibited the increase in dopamine content induced by L-DOPA Treatments $(50-100\;{\mu}M)$ in PC12 cells. These results suggest that liriodenine inhibited dopamine biosynthesis and L-DOPA-induced increase in dopamine content by reducing the activities of tyrosine hydroxylase and aromatic L- amino acid decarboxylase in PC12 cells.

Cloning and Characterization of a Rice cDNA Encoding Glutamate Decarboxylase

  • Oh, Suk-Heung;Choi, Won-Gyu;Lee, In-Tae;Yun, Song-Joong
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.595-601
    • /
    • 2005
  • In this study, we have isolated a rice (Oryza sativa L.) glutamate decarboxylase (RicGAD) clone from a root cDNA library, using a partial Arabidopsis thaliana GAD gene as a probe. The rice root cDNA library was constructed with mRNA, which had been derived from the roots of rice seedlings subjected to phosphorus deprivation. Nucleotide sequence analysis indicated that the RicGAD clone was 1,712 bp long, and harbors a complete open reading frame of 505 amino acids. The 505 amino acid sequence deduced from this RicGAD clone exhibited 67.7% and 61.9% identity with OsGAD1 (AB056060) and OsGAD2 (AB056061) in the database, respectively. The 505 amino acid sequence also exhibited 62.9, 64.1, and 64.2% identity to Arabidopsis GAD (U9937), Nicotiana tabacum GAD (AF020425), and Petunia hybrida GAD (L16797), respectively. The RicGAD was found to possess a highly conserved tryptophan residue, but lacks the lysine cluster at the C-proximal position, as well as other stretches of positively charged residues. The GAD sequence was expressed heterologously using the high copy number plasmid, pVUCH. Our activation analysis revealed that the maximal activation of the RicGAD occurred in the presence of both $Ca^{2+}$ and calmodulin. The GAD-encoded 56~58 kDa protein was identified via Western blot analysis, using an anti-GAD monoclonal antibody. The results of our RT-PCR analyses revealed that RicGAD is expressed predominantly in rice roots obtained from rice seedlings grown under phosphorus deprivation conditions, and in non-germinated brown rice, which is known to have a limited phosphorus bioavailability. These results indicate that RicGAD is a $Ca^{2+}$/calmodulin-dependent enzyme, and that RicGAD is expressed primarily under phosphate deprivation conditions.

Effects of Protoberberine Compounds on Serotonin Content in P815 Cells (Protoberberine 화합물이 P815 세포중의 serotonin 함량에 미치는 영향)

  • Lee, Myung-Koo;Kim, Eung-Il;Hur, Jae-Doo;Lee, Kyong-Soon;Ro, Jai-Seup
    • Korean Journal of Pharmacognosy
    • /
    • v.32 no.1 s.124
    • /
    • pp.49-54
    • /
    • 2001
  • The effects of protoberberine compounds on serotonin biosynthesis in P815 cells were investigated. Protoberberine compounds such as berberine, palmatine and coralyne decreased serotonin content dose-dependently, but coptisine did not. The $IC_{50}$ values of berberine, palmatine and coralyne were $3.0\;{\mu}M,\;16.5\;{\mu}M\;and\;14.5\;{\mu}M$, respectively. Protoberberine compounds at concentrations up to $20\;{\mu}M$ were not cytotoxic towards P815 cells. The activity of tryptophan hydroxylase, a ratelimiting enzyme in serotonin biosynthesis, was inhibited by the exposure of berberine, palmatine and coralyne in P815 cells (14.9-19.3% inhibition at $2-15\;{\mu}M$), but that of aromatic L-amino acid decarboxylase was not. These results suggest that the inhibition of tryptophan hydroxylase activity by berberine, palmatine and coralyne might partially contribute to the decrease in serotonin content in P815 cells.

  • PDF

Characterization of γ-Aminobutyric acid(GABA) produced by a lactic acid bacterium from button mushroom bed

  • Lee, Yun-Seok;Song, Tae-Young;Kong, Won-Sik;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.11 no.4
    • /
    • pp.181-186
    • /
    • 2013
  • ${\gamma}$-Aminobutyric acid(GABA) is a four carbon non-protein amino acid that has several well-known physiological functions, such as a postsynaptic inhibitory neurotransmitter in the brain and induction of hypotensive and tranquilizer effects. A lactic acid bacterium was isolated from button mushroom bed, which is showing high GABA productivity by TLC or HPLC analysis. The strain was identified as Lactobacillus hilgardii by analysis of 16S rDNA gene sequence. When the maximum production of GABA by L. hilgardii was investigated with various concentration of monosodium glutamate, the yield of GABA reached to be 53.65 mM at 1% mono sodium glutamate (MSG) in flask cultivation. A Glutamate decarboxylase (GAD) enzyme, which was known to convert MSG to GABA, was purified from a cell-free extract of L. hilgardii and the molecular weights of purified GAD was estimated to 60,000 by SDS-PAGE. The optimum pH and temperature of GAD were at pH4.6 and at $37^{\circ}C$, respectively. The GAD activity was increased by the addition of sulfate ions such as ammonium sulfate, sodium sulfate and magnesium sulfate, indicating that the increase of hydrophobic interaction causes the increase of GAD activity.

Inhibition of L-DOPA-Induced Increase in Dopamine Content by $(1R,9S)-{\beta}-Hydrastine$ Hydrochloride in PC12 cells

  • Yin, Shou-Yu;Lee, Jae-Joon;Kim, Yu-Mi;Jin, Chun-Mei;Yang, Yoo-Jung;Kang, Min-Hee;Lee, Myung-Koo
    • Natural Product Sciences
    • /
    • v.10 no.3
    • /
    • pp.119-123
    • /
    • 2004
  • The effects of BHSH on L-DOPA-induced increase in dopamine content in PC12 cells were investigated. L-DOPA treatment at $20\;or\;50\;{\mu}M$ increased dopamine content after both 24 and 48 h of incubation in PC12 cells. However, the co-treatments of BHSH $(10-50\;{\mu}M)$ with L-DOPA $(20\;or\;50\;{\mu}M)$ significantly inhibited the increase of dopamine content induced by L-DOPA. BHSH treatment at $10-50\;{\mu}M$ significantly inhibited basal aromatic L-amino acid decarboxylase (AADC) activity in a concentration-dependent manner at 15 min, and then AADC activity was rapidly recovered to the control level at about 2 h. These results indicate that the inhibition of AADC activity by BHSH was, in part, contributed to the early-stage decrease of dopamine content induced by LDOPA in PC12 cells. Taken together, it is proposed that the short-term inhibition of dopamine biosynthesis by BHSH was mediated by the regulation of tyrosine hydroxylace (TH).

Molecular Cloning and Nucleotide Sequencing of a DNA Clone Encoding Arginine Decarboxylase in Rice (Oryza sativa L.) (벼의 arginine decarboxylase DNA clone의 재조합 및 염기서열 분석)

  • Hong, Sung-Hoi;Jeung, Ji-Ung;Ok, Sung-Han;Shin, Jeong-Sheop
    • Applied Biological Chemistry
    • /
    • v.39 no.2
    • /
    • pp.112-117
    • /
    • 1996
  • Arginine decarboxylase (ADC) is the first enzyme in one of the two pathways of diamine putrescine biosynthesis in plants. The genes encoding ADC have previously been cloned from Escherichia coli, oat and tomato genome. Two degenerate oligonucleotides (17-mer) corresponding to two conserved regions of ADC were used as primers in polymerase chain reaction of rice (Oryza sativa L.) genomic DNA, and an approximately 1.0 kbp fragment was obtained. This amplified PCR product showed an open reading frame which contains 1,022 bp of nucleotide sequences. This PCR product was cloned into pGEM-originated T vector and the short 500 bp PstI digested fragment was subcloned into pGEM-3zf(+/-) vectors to facilitate sequencing. The nucleotide sequence of this PCR product showed about 74% and 70% identity with the same regions of the oat and tomato ADC cDNA sequences, respectively. The predicted amino acid sequence exhibited 45% and 62% identity with oat and tomato ADC polypeptide fragments, respectively. The sequence similarities of 34%, 47% and 38% were previously reported in oat and E. coli, tomato and oat, and tomato and E. coli ADC amino acids, respectively. Therefore, similarities and identities between rice and oat or tomato are remarkably higher than those others of the previous reports. In the highly conserved regions in both the amino acid sequence and spacing regions among the sequences of these three, rice ADC open reading frame also has the exactly same regions with the striking similarity. RNA blot analysis showed that hnc is expressed as a transcript of approximately 2.5 kbP in the rice seedling leaf tissues.

  • PDF

Enzymatic Synthesis of L-tert-Leucine with Branched Chain Aminotransferase

  • Seo, Young-Man;Yun, Hyung-Don
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.10
    • /
    • pp.1049-1052
    • /
    • 2011
  • In this study, we demonstrated the asymmetric synthesis of L-tert-leucine from trimethylpyruvate using branched-chain aminotransferase (BCAT) from Escherichia coli in the presence of L-glutamate as an amino donor. Since BCAT was severely inhibited by 2-ketoglutarate, in order to overcome this here, we developed a BCAT/aspartate aminotransferase (AspAT) and BCAT/AspAT/pyruvate decarboxylase (PDC) coupling reaction. In the BCAT/AspAT/PDC coupling reaction, 89.2 mM L-tert-leucine (ee>99%) was asymmetrically synthesized from 100 mM trimethylpyruvate.

Cloning, Purification and Characterization of Novel L-Aspartate β-decarboxylase from Enterococcus (Enterococcus faecalsis 유래의 신규 L-aspartate β-decarboxylase의 cloning, 정제 및 활성 규명)

  • Lee Dong-Geun;Song Tae-Yoon;Kim Nam Young;Lee Eo-Jin;Ha Sang-An;Lee Jae-Hwa;Ha Jong-Myuong;Ha Bae Jin;Lee Sang-Hyeon
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.44-48
    • /
    • 2006
  • The gene for a L-aspartate $\beta-decarboxylase$ (ADC) from Enterococcus faecalis was cloned and sequenced. The gene comprised an open reading frame of 1,611 base pairs, which encodes a protein of 58,960 Da consisting of 536 amino acid residues. The gene was subcloned into an expression plasmid for overexpression of the ADC. The recombinant ADC was produced using E. coli as the host and purified to homogeneity. Our result showed that the ADC may be obtained from bacteria known nucleotide sequence. Thus, we suggest that high value L-alanine might be produced by low value aspartate.

Selection of indigenous starter culture for safety and its effect on reduction of biogenic amine content in Moo som

  • Tangwatcharin, Pussadee;Nithisantawakhup, Jiraroj;Sorapukdee, Supaluk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.10
    • /
    • pp.1580-1590
    • /
    • 2019
  • Objective: The aims of this study were to select one strain of Lactobacillus plantarum (L. plantarum) for a potential indigenous safe starter culture with low level antibiotic resistant and low biogenic amine production and evaluate its effect on biogenic amines reduction in Moo som. Methods: Three strains of indigenous L. plantarum starter culture (KL101, KL102, and KL103) were selected based on their safety including antibiotic resistance and decarboxylase activity, and fermentation property as compared with a commercial starter culture (L. plantarum TISIR543). Subsequently, the effect of the selected indigenous safe starter culture on biogenic amines formation during Moo som fermentation was studied. Results: KL102 and TISIR 543 were susceptible to penicillin G, tetracycline, chloramphenicol, erythromycin, gentamycin, streptomycin, vancomycin, ciprofloxacin and trimethoprim (MIC90 ranging from 0.25 to $4{\mu}g/mL$). All strains were negative amino acid-decarboxylase for lysis of biogenic amines in screening medium. For fermentation in Moo som broth, a relatively high maximum growth rate of KL102 and TISIR543 resulted in a generation time than in the other strains (p<0.05). These strain counts were constant during the end of fermentation. Similarly, KL102 or TISIR543 addition supported increases of lactic acid bacterial count and total acidity in Moo som fermentation. For biogenic amine reduction, tyramine, putrescine, histamine and spermine contents in Moo som decreased significantly by the addition KL102 during 1 d of fermentation (p<0.05). In final product, histamine, spermine and tryptamine contents in Moo som inoculated with KL102 were lower amount those with TISIR543 (p<0.05). Conclusion: KL102 was a suitable starter culture to reduce the biogenic amine formation in Moo som.