• Title/Summary/Keyword: L-P model

Search Result 1,404, Processing Time 0.031 seconds

Probabilistic Models to Predict Listeria monocytogenes Growth at Low Concentrations of NaNO2 and NaCl in Frankfurters

  • Gwak, Eunji;Oh, Mi-Hwa;Park, Beom-Young;Lee, Heeyoung;Lee, Soomin;Ha, Jimyeong;Lee, Jeeyeon;Kim, Sejeong;Choi, Kyoung-Hee;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.35 no.6
    • /
    • pp.815-823
    • /
    • 2015
  • This study developed probabilistic models to describe Listeria monocytogenes growth responses in meat products with low concentrations of NaNO2 and NaCl. A five-strain mixture of L. monocytogenes was inoculated in NBYE (nutrient broth plus 0.6% yeast extract) supplemented with NaNO2 (0-141 ppm) and NaCl (0-1.75%). The inoculated samples were then stored under aerobic and anaerobic conditions at 4, 7, 10, 12, and 15℃ for up to 60 d. Growth response data [growth (1) or no growth (0)] for each combination were determined by turbidity. The growth response data were analyzed using logistic regression to predict the growth probability of L. monocytogenes as a function of NaNO2 and NaCl. The model performance was validated with the observed growth responses. The effect of an obvious NaNO2 and NaCl combination was not observed under aerobic storage condition, but the antimicrobial effect of NaNO2 on the inhibition of L. monocytogenes growth generally increased as NaCl concentration increased under anaerobic condition, especially at 7-10℃. A single application of NaNO2 or NaCl significantly (p<0.05) inhibited L. monocytogenes growth at 4-15℃, but the combination of NaNO2 or NaCl more effectively (p<0.05) inhibited L. monocytogenes growth than single application of either compound under anaerobic condition. Validation results showed 92% agreement between predicted and observed growth response data. These results indicate that the developed model is useful in predicting L. monocytogenes growth response at low concentrations of NaNO2 and NaCl, and the antilisterial effect of NaNO2 increased by NaCl under anaerobic condition.

FE simulation of S-N curves for a riveted connection using two-stage fatigue models

  • Correia, Jose A.F.O.;de Jesus, Abilio M.P.;Silva, Antonio L.L.;Pedrosa, Bruno;Rebelo, Carlos;Calcada, Rui A.B.
    • Advances in Computational Design
    • /
    • v.2 no.4
    • /
    • pp.333-348
    • /
    • 2017
  • Inspections of ancient metallic bridges have illustrated fatigue cracking in riveted connections. This paper presents a comparison between two alternative finite element (FE) models proposed to predict the fatigue strength of a single shear and single rivet connection. The first model is based on solid finite elements as well as on contact elements, to simulate contact between the components of the connection. The second model is built using shell finite elements in order to model the plates of the riveted connection. Fatigue life predictions are carried out for the shear splice, integrating both crack initiation and crack propagation lives, resulting from the two alternative FE models. Global fatigue results, taking into account several clamping stresses on rivet, are compared with available experimental results. Proposed comparisons between predictions and experimental data illustrated that the proposed two-stage model yields consistent results.

Structural Characteristics that Influence on the Insecticidal Activity of 2-(n-Octyl)pseudothiourea Analogues against the Diamondback Moth (Plutella xylostella, L.)

  • Soung, Min-Gyu;Kil, Mun-Jae;Sung, Nack-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2749-2753
    • /
    • 2009
  • Structural characteristics that influence on the insecticidal activity ($pI_{50}$) of 2-(n-octyl)isothiourea analogues (1-45) against the diamondback moth (Plutella xylostella, L.) based on three dimensional quantitative structure activity relationships (3D-QSARs) were discussed quantitatively using a comparative molecular field analysis (CoMFA) and a comparative molecular similarity indeces analysis (CoMSIA) methods. The statistical values of the CoMFA 2 model were better than those of the CoMSIA 1 model. The CoMFA 2 model was the optimized model with the correlativity (the training set: Ave. = 0.104 & PRESS = 0.613) and the predictability (the test set: Ave. = 0.086 & PRESS = 0.096). Insecticidal activities with the optimized CoMFA 2 model were dependent upon steric factors (79.4%) of $R_1-R_3$ substituents. From the analytical results of CoMFA contour maps, it is predicted that the R1 substituent of 1-45 which has a steric favor in a broad space, $R_2\;and\;R_3$ groups with a steric favor in a narrow space and a H-bond donor favor would have better the insecticidal activity.

Phosphate Removal from Aqueous Solution by Aluminum (Hydr)oxide-coated Sand

  • Han, Yong-Un;Park, Seong-Jik;Park, Jeong-Ann;Choi, Nag-Choul;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.164-169
    • /
    • 2009
  • A powder form of aluminum (hydr)oxides is not suitable in wastewater treatment/filtration systems because of low hydraulic conductivity and large sludge production. In this study, aluminum (hydr)oxide-coated sand (AOCS) was used to remove phosphate from aqueous solution. The properties of AOCS were analyzed using a scanning electron microscopy (SEM) combined with an energy dispersive X-ray spectrometer (EDS) and an X-ray diffractometer (XRD). Kinetic batch, equilibrium batch, and closed-loop column experiments were performed to examine the adsorption of phosphate to AOCS. The XRD pattern indicated that the powder form of aluminum (hydr)oxides coated on AOCS was similar to a low crystalline boehmite. Kinetic batch experiments demonstrated that P adsorption to AOCS reached equilibrium after 24 h of reaction time. The kinetic sorption data were described well by the pseudo second-order kinetic sorption model, which determined the amount of P adsorbed at equilibrium ($q_e$ = 0.118 mg/g) and the pseudo second-order velocity constant (k = 0.0036 g/mg/h) at initial P concentration of 25 mg/L. The equilibrium batch data were fitted well to the Freundlich isotherm model, which quantified the distribution coefficient ($K_F$ = 0.083 L/g), and the Freundlich constant (1/n = 0.339). The closed-loop column experiments showed that the phosphate removal percent decreased from 89.1 to 41.9% with increasing initial pH from 4.82 to 9.53. The adsorption capacity determined from the closed-loop experiment was 0.239 mg/g at initial pH 7.0, which is about two times greater than that ($q_e$ = 0.118 mg/g) from the kinetic batch experiment at the same condition.

Individual Load Select and Characteristic Experiment for Load Model Construction (부하모델 구축을 위한 개별부하선정 및 특성실험에 관한 연구)

  • Ji, P.S.;Lee, J.P.;Lim, J.Y.;Park, S.W.;Kim, K.D.;Wee, W.S.;Kim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.325-327
    • /
    • 1999
  • In this research, selection of component load and measurement device is considered for accurate component load modeling. The procedure of component load characteristic experiments is also presented.

  • PDF

Studies on the Derivation of the Instantaneous Unit Hydrograph for Small Watersheds of Main River Systems in Korea (한국주요빙계의 소유역에 대한 순간단위권 유도에 관한 연구 (I))

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4296-4311
    • /
    • 1977
  • This study was conducted to derive an Instantaneous Unit Hydrograph for the accurate and reliable unitgraph which can be used to the estimation and control of flood for the development of agricultural water resources and rational design of hydraulic structures. Eight small watersheds were selected as studying basins from Han, Geum, Nakdong, Yeongsan and Inchon River systems which may be considered as a main river systems in Korea. The area of small watersheds are within the range of 85 to 470$\textrm{km}^2$. It is to derive an accurate Instantaneous Unit Hydrograph under the condition of having a short duration of heavy rain and uniform rainfall intensity with the basic and reliable data of rainfall records, pluviographs, records of river stages and of the main river systems mentioned above. Investigation was carried out for the relations between measurable unitgraph and watershed characteristics such as watershed area, A, river length L, and centroid distance of the watershed area, Lca. Especially, this study laid emphasis on the derivation and application of Instantaneous Unit Hydrograph (IUH) by applying Nash's conceptual model and by using an electronic computer. I U H by Nash's conceptual model and I U H by flood routing which can be applied to the ungaged small watersheds were derived and compared with each other to the observed unitgraph. 1 U H for each small watersheds can be solved by using an electronic computer. The results summarized for these studies are as follows; 1. Distribution of uniform rainfall intensity appears in the analysis for the temporal rainfall pattern of selected heavy rainfall event. 2. Mean value of recession constants, Kl, is 0.931 in all watersheds observed. 3. Time to peak discharge, Tp, occurs at the position of 0.02 Tb, base length of hlrdrograph with an indication of lower value than that in larger watersheds. 4. Peak discharge, Qp, in relation to the watershed area, A, and effective rainfall, R, is found to be {{{{ { Q}_{ p} = { 0.895} over { { A}^{0.145 } } }}}} AR having high significance of correlation coefficient, 0.927, between peak discharge, Qp, and effective rainfall, R. Design chart for the peak discharge (refer to Fig. 15) with watershed area and effective rainfall was established by the author. 5. The mean slopes of main streams within the range of 1.46 meters per kilometer to 13.6 meter per kilometer. These indicate higher slopes in the small watersheds than those in larger watersheds. Lengths of main streams are within the range of 9.4 kilometer to 41.75 kilometer, which can be regarded as a short distance. It is remarkable thing that the time of flood concentration was more rapid in the small watersheds than that in the other larger watersheds. 6. Length of main stream, L, in relation to the watershed area, A, is found to be L=2.044A0.48 having a high significance of correlation coefficient, 0.968. 7. Watershed lag, Lg, in hrs in relation to the watershed area, A, and length of main stream, L, was derived as Lg=3.228 A0.904 L-1.293 with a high significance. On the other hand, It was found that watershed lag, Lg, could also be expressed as {{{{Lg=0.247 { ( { LLca} over { SQRT { S} } )}^{ 0.604} }}}} in connection with the product of main stream length and the centroid length of the basin of the watershed area, LLca which could be expressed as a measure of the shape and the size of the watershed with the slopes except watershed area, A. But the latter showed a lower correlation than that of the former in the significance test. Therefore, it can be concluded that watershed lag, Lg, is more closely related with the such watersheds characteristics as watershed area and length of main stream in the small watersheds. Empirical formula for the peak discharge per unit area, qp, ㎥/sec/$\textrm{km}^2$, was derived as qp=10-0.389-0.0424Lg with a high significance, r=0.91. This indicates that the peak discharge per unit area of the unitgraph is in inverse proportion to the watershed lag time. 8. The base length of the unitgraph, Tb, in connection with the watershed lag, Lg, was extra.essed as {{{{ { T}_{ b} =1.14+0.564( { Lg} over {24 } )}}}} which has defined with a high significance. 9. For the derivation of IUH by applying linear conceptual model, the storage constant, K, with the length of main stream, L, and slopes, S, was adopted as {{{{K=0.1197( {L } over { SQRT {S } } )}}}} with a highly significant correlation coefficient, 0.90. Gamma function argument, N, derived with such watershed characteristics as watershed area, A, river length, L, centroid distance of the basin of the watershed area, Lca, and slopes, S, was found to be N=49.2 A1.481L-2.202 Lca-1.297 S-0.112 with a high significance having the F value, 4.83, through analysis of variance. 10. According to the linear conceptual model, Formular established in relation to the time distribution, Peak discharge and time to peak discharge for instantaneous Unit Hydrograph when unit effective rainfall of unitgraph and dimension of watershed area are applied as 10mm, and $\textrm{km}^2$ respectively are as follows; Time distribution of IUH {{{{u(0, t)= { 2.78A} over {K GAMMA (N) } { e}^{-t/k } { (t.K)}^{N-1 } }}}} (㎥/sec) Peak discharge of IUH {{{{ {u(0, t) }_{max } = { 2.78A} over {K GAMMA (N) } { e}^{-(N-1) } { (N-1)}^{N-1 } }}}} (㎥/sec) Time to peak discharge of IUH tp=(N-1)K (hrs) 11. Through mathematical analysis in the recession curve of Hydrograph, It was confirmed that empirical formula of Gamma function argument, N, had connection with recession constant, Kl, peak discharge, QP, and time to peak discharge, tp, as {{{{{ K'} over { { t}_{ p} } = { 1} over {N-1 } - { ln { t} over { { t}_{p } } } over {ln { Q} over { { Q}_{p } } } }}}} where {{{{K'= { 1} over { { lnK}_{1 } } }}}} 12. Linking the two, empirical formulars for storage constant, K, and Gamma function argument, N, into closer relations with each other, derivation of unit hydrograph for the ungaged small watersheds can be established by having formulars for the time distribution and peak discharge of IUH as follows. Time distribution of IUH u(0, t)=23.2 A L-1S1/2 F(N, K, t) (㎥/sec) where {{{{F(N, K, t)= { { e}^{-t/k } { (t/K)}^{N-1 } } over { GAMMA (N) } }}}} Peak discharge of IUH) u(0, t)max=23.2 A L-1S1/2 F(N) (㎥/sec) where {{{{F(N)= { { e}^{-(N-1) } { (N-1)}^{N-1 } } over { GAMMA (N) } }}}} 13. The base length of the Time-Area Diagram for the IUH was given by {{{{C=0.778 { ( { LLca} over { SQRT { S} } )}^{0.423 } }}}} with correlation coefficient, 0.85, which has an indication of the relations to the length of main stream, L, centroid distance of the basin of the watershed area, Lca, and slopes, S. 14. Relative errors in the peak discharge of the IUH by using linear conceptual model and IUH by routing showed to be 2.5 and 16.9 percent respectively to the peak of observed unitgraph. Therefore, it confirmed that the accuracy of IUH using linear conceptual model was approaching more closely to the observed unitgraph than that of the flood routing in the small watersheds.

  • PDF

pH Solubility Properties and Improved Dissolution of Pranlukast as an Poorly Water-soluble Model Drug Prepared by Spray-drying with Plasdone S-630 (플라스돈 S-630과 함께 분무건조된 모델 난용성 약물로서 프란루카스트의 pH 용해도 특성 및 용출률 개선)

  • Cho, Won-Hyung;Lee, Young-Hyun;Song, Byung-Joo;Yoo, Seok-Cheol;Lim, Dong-Kyun;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.277-283
    • /
    • 2011
  • Solid dispersion is mainly used for improved dissolution of poorly water-soluble drugs. Solid dispersion of pranlukast was prepared by spray-drying with plasdone S-630. When pH of water was high, pranlukast was highly soluble in the solubility experiment of solid dispersions with varying pH. The particle size of pranlukast particles in solid dispersions was measured to be in nanometers scale based on particle size analysis. Zeta-potential analysis confirmed the negative charge of solid dispersion. SEM was used to observe the surface of solid dispersion, which confirmed spherical morphology, DSC and XRD confirmed the amorphous nature of solid dispersions. The in vitro test was carried out to find improved dissolution rate of pranlukast solid dispersion in simulated juice gastric and a controlled experiment was carried out to compare pranlukast solid dispersions with a conventional drug (Onon$^{(R)}$), These results showed the dissolution properties of pranlukast solid dispersions prepared by spray drying proper for the oral pharmaceutical formulation.

The consistency estimation in nonlinear regression models with noncompact parameter space

  • Park, Seung-Hoe;Kim, Hae-Kyung;Jang, Sook-Hee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.377-383
    • /
    • 1996
  • We consider in this paper the following nonlinear regression model $$ (1.1) y_t = f(x_t, \theta_o) + \in_t, t = 1, \ldots, n, $$ where $y_t$ is the tth response, $x_t$ is m-vector imput variable, $\theta_o$ is a p-vector of unknown parameter belong to a parameter space $\Theta, f:R^m \times \Theta \ to R^1$ is a nonlinear known function, and $\in_t$ are independent unobservable random errors with finite second moment.

  • PDF

Evaluation Index of Sea Water Exchange Capability of a Port (항만의 해수교환 능력의 평가 지표)

  • LEE JUNG LYUL;KIM IN HO
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.22-28
    • /
    • 2004
  • A mathematical model has been developed to evaluate the capability of sea water exchanges under tidal and diffusive environments and has been verified through comparison with numerical experiments. From the mathematical analysis, this study presents the rates of sea water exchanges due to the tidal inflow and diffusion process. The port characteristic length $L_p$ is the most significant evaluation index.

The Characteristics and the Effects of Pollutant Loadings from Nonpoint Sources on Water Quality in Suyeong Bay (수영만 수질에 미치는 비점원 오염부하의 특성과 영향)

  • CHO Eun Il;LEE Suk Mo;PARK Chung-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.3
    • /
    • pp.279-293
    • /
    • 1995
  • The most obvious and easily recognizable sources of potential water pollution are point sources such as domestic and industrial wastes. But recently, the potential effects of nonpoint sources on water quality have been increased apparently. In order to evaluate the characteristics and the effects of nonpoint sources on water quality, this study was performed in Suyeong Bay from May, 1992 to July, 1992. The depth-averaged 2-dimensional numerical model, which consists of the hydrodynamic model and the diffusion model was applied to simulate the water quality in Suyeong Bay. When flowrate was $65.736m^3/s,$ the concentration of pollutants (COD, TSS and VSS) at Oncheon stream (Sebeong bridge) during second flush were very high as much as 121.4mg/l of COD, 1148.0mg/l of TSS and 262.0mg/1 of VSS. When flowrate was 4.686m^3/s, the concentration of pollutants $(TIN,\;NH_4\;^+-\;N,\;NO_2\;^--N\;and\;PO_4\;^{3-}-P)$ during the first flush were very high as much as 20.306mg/1 of TIN, 14.154mg/1 of $NH_4\;^+-N$, 9.571mg/l of $NO_2\;^--N$ and l.785mg/l of $PO_2\;^{3-}-P$ As results of the hydrodynamic model simulation, the computed maximum velocity of tidal currents in Suyeong Bay was 0.3m/s and their direction was clockwise flow for ebb tide and counter clockwise flow for Hood tide. Four different methods were applied for the diffusion simulation in Suyeong Bay. There were the effects for the water quality due to point loads, annual nonpoint loads and nonpoint loads during the wet weather and the investigation period, respectively. The efforts of annual nonpoint loads and nonpoint loads during the wet weather seem to be slightly deteriorated in comparison with the effects of point loads. However, the bay was significantly polluted by the nonpoint loads during the investigation period. In this case, COD and SS concentrations ranged 2.0-30.0mg/l, 7.0- 200.0mg/l in ebb tide, respectively. From these results, it can be emphasized that the large amount of pollutants caused by nonpoint sources during the wet weather were discharged into the bay, and affected significantly to both the water quality and the marine ecosystem. Therefore, it is necessary to consider the loadings of nonpoint pollutants to plan wastewater treatment plant.

  • PDF