• Title/Summary/Keyword: L-P model

Search Result 1,415, Processing Time 0.03 seconds

Cyanide removal simulation from wastewater in the presence of titanium dioxide nanoparticles

  • Safavi, Banafshe;Asadollahfardi, Gholamreza;Darban, Ahmad khodadadi
    • Advances in nano research
    • /
    • v.5 no.1
    • /
    • pp.27-34
    • /
    • 2017
  • One of the methods of removing cyanide from wastewater is surface adsorption. We simulated the removal of cyanide from a synthetic wastewater in the presence of Titanium dioxide nano-particles absorbent uses VISUAL MINTEQ 3.1 software. Our aim was to determine the factors affecting the adsorption of cyanide from synthetic wastewater applying simulation. Synthetic wastewater with a concentration of 100 mg/l of potassium cyanide was used for simulation. The amount of titanium dioxide was 1 g/l under the temperature of $25^{\circ}C$. The simulation was performed using an adsorption model of Freundlich and constant capacitance model. The results of simulation indicated that three factors including pH, nanoparticles of titanium dioxide and the primary concentration of cyanide affect the adsorption level of cyanide. The simulation and experimental results had a good agreement. Also by increasing the pH level of adsorption increases 11 units and then almost did not change. An increase in cyanide concentration, the adsorption level was decreased. In simulation process, rising the concentrations of titanium dioxide nanoparticles to 1 g/l, the rate of adsorption was increased and afterward no any change was observed. In all cases, the coefficient of determination between the experimental data and simulation data was above 0.9.

Optimization of Capsular Polysaccharide Production by Streptococcus pneumoniae Type 3

  • Jin, Sheng-De;Kim, Young-Min;Kang, Hee-Kyoung;Jung, Seung-Jin;Kim, Do-Man
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1374-1378
    • /
    • 2009
  • Response surface methodology (RSM) examining the effects of five-level-three-factors and their mutual interactions was utilized to optimize the fermentation conditions to enhance capsular polysaccharide (CPS) production of Streptococcus pneumoniae type 3. Twenty experiments conducted in an 8-l lab-scale fermentor were designed to assess fermentation pH, supplemented glucose concentration, and stirring rate. The predicted highest CPS production by the obtained optimization model equation was 256.14 mg/l at optimal conditions [pH 7.5, stirring rate 180 rpm, and supplemented glucose concentration 1% (w/v)]. The validity of the response model was confirmed by the good agreement between the predicted and experimental results. The maximum amount of CPS obtained was $255.03\pm2.23$ mg/l.

Sensitivity Analysis of dVm/dtMax_repol to Ion Channel Conductance for Prediction of Torsades de Pointes Risk (다형 심실빈맥의 예측을 위한 dVm/dtMax_repol의 이온채널 전도도에 대한 민감도 분석)

  • Jeong, Da Un;Yoo, Yedam;Marcellinus, Aroli;Lim, Ki Moo
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.331-340
    • /
    • 2022
  • Early afterdepolarization (EAD), a significant cause of fatal ventricular arrhythmias including Torsade de Pointes (TdP) in long QT syndromes, is a depolarizing afterpotential at the plateau or repolarization phase in action potential (AP) profile early before completing one pace. AP duration prolongation is related to EAD but is not necessarily accounted for EAD. Several computational studies suggested EAD can form from an abnormality in the late plateau and/or repolarization phase of AP shape. In this sense, we hypothesized the slope during repolarization has the characteristics to predict TdP risk, mainly focusing on the maximum slope during repolarization (dVm/dtmax_repol). This study aimed to predict the sensitivity of dVm/dtmax_repol to ion channel conductances as a TdP risk metric through a population simulation considering multiple effects of simultaneous reduction in six ion channel conductances of gNaL, gKr, gKs, gto, gK1, and gCaL. Additionally, we verified the availability of dVm/dtmax_repol for TdP risk prediction through the correlation analysis with qNet, the representative TdP metric. We performed the population simulations based on the methodology of Gemmel et al. using the human ventricular myocyte model of Dutta et al. Among the sixion channel conductances, dVm/dtmax_repol and qNet responded most sensitively to the change in gKr, followed by gNaL. Furthermore, dVm/dtmax_repol showed a statistically significant high negative correlation with qNet. The dVm/dtmax_repol values were significantly different according to three TdP risk levels of high, intermediate, and low by qNet (p<0.001). In conclusion, we suggested dVm/dtmax_repol as a new biomarker metric for TdP risk assessment.

Mass transfer kinetics using two-site interface model for removal of Cr(VI) from aqueous solution with cassava peel and rubber tree bark as adsorbents

  • Vasudevan, M.;Ajithkumar, P.S.;Singh, R.P.;Natarajan, N.
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.152-163
    • /
    • 2016
  • Present study investigates the potential of cassava peel and rubber tree bark for the removal of Cr (VI) from aqueous solution. Removal efficiency of more than 99% was obtained during the kinetic adsorption experiments with dosage of 3.5 g/L for cassava peel and 8 g/L for rubber tree bark. By comparing popular isotherm models and kinetic models for evaluating the kinetics of mass transfer, it was observed that Redlich-Peterson model and Langmuir model fitted well ($R^2$ > 0.99) resulting in maximum adsorption capacity as 79.37 mg/g and 43.86 mg/g for cassava peel and rubber tree bark respectively. Validation of pseudo-second order model and Elovich model indicated the possibility of chemisorption being the rate limiting step. The multi-linearity in the diffusion model was further addressed using multi-sites models (two-site series interface (TSSI) and two-site parallel interface (TSPI) models). Considering the influence of interface properties on the kinetic nature of sorption, TSSI model resulted in low mass transfer rate (5% for cassava peel and 10% for rubber tree bark) compared to TSPI model. The study highlights the employability of two-site sorption model for simultaneous representation of different stages of kinetic sorption for finding the rate-limiting process, compared to the separate equilibrium and kinetic modeling attempts.

Kinetics of Cr(VI) Sorption/Reduction from Aqueous Solution on Activated Rice Husk

  • El-Shafey, E.I.;Youssef, A.M.
    • Carbon letters
    • /
    • v.7 no.3
    • /
    • pp.171-179
    • /
    • 2006
  • A carbonaceous sorbent was prepared from rice husk via sulphuric acid treatment. After preparation and washing, the wet carbon with moisture content 85% was used in its wet status in this study due to its higher reactivity towards Cr(VI) than the dry carbon. The interaction of Cr(VI) and the carbon was studied and two processes were investigated in terms of kinetics and equilibrium namely Cr(VI) removal and chromium sorption. Cr(VI) removal and chromium sorption were studied at various initial pH (1.6-7), for initial Cr(VI) concentration (100 mg/l). At equilibrium, maximum Cr(VI) removal occurred at low initial pH (1.6-2) where, Cr(III) was the only available chromium species in solution. Cr(VI) removal, at such low pH, was related to the reduction to Cr(III). Maximum chromium sorption (60.5 mg/g) occurred at initial pH 2.8 and a rise in the final pH was recorded for all initial pH studied. For the kinetic experiments, approximate equilibrium was reached in 60-100 hr. Cr(VI) removal data, at initial pH 1.6-2.4, fit well pseudo first order model but did not fit pseudo second order model. At initial pH 2.6-7, Cr(VI) removal data did not fit, anymore, pseudo first order model, but fit well pseudo second order model instead. The change in the order of Cr(VI) removal process takes place in the pH range 2.4-2.6 under the experimental conditions. Other two models were tested for the kinetics of chromium sorption with the data fitting well pseudo second order model in the whole range of pH. An increase in cation exchange capacity, sorbent acidity and base neutralization capacity was recorded for the carbon sorbent after the interaction with acidified Cr(VI) indicating the oxidation processes on the carbon surface accompanying Cr(VI) reduction.

  • PDF

Poly(L-lysine) Based Semi-interpenetrating Polymer Network as pH-responsive Hydrogel for Controlled Release of a Model Protein Drug Streptokinase

  • Park, Yoon-Jeong;Jin Chang;Chen, Pen-Chung;Victor Chi-Min Yang
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.5
    • /
    • pp.326-331
    • /
    • 2001
  • With the aim of developing of pH-sensitive controlled drug release system, a poly(Llysine) (PLL) based cationic semi-interpenetrating polymer network (semi-IPN) has been synthesized. This cationic hydrogel was designed to swell at lower pH and de-swell at higher pH and therefore be applicable for achieving regulated drug release at a specific pH range. In addition to the pH sensitivity, this hydrogel was anticipated to interact with an ionic drug, providing another means to regulate the release rate of ionic drugs. This semi-IPN hydrogel was prepared using a free-radical polymerization method and by crosslinking of the polyethylene glycol (PEG)-methacrylate polymer through the PLL network. The two polymers were penetrated with each other via interpolymer complexation to yield the semi-IPN structures. The PLL hydrogel thus prepared showed dynamic swelling/de-swelling behavior in response to pH change, and such a behavior was influenced by both the concentrations of PLL and PEG-methacrylate. Drug release from this semi-IPN hydrogel was also investigated using a model protein drug, streptokinase. Streptokinase release was found to be dependent on its ionic interaction with the PLL backbones as well as on the swelling of the semi-IPN hydrogel. These results suggest that a PLL semi-IPN hydrogel could potentially be used as a drug delivery platform to modulate drug release by pH-sensitivity and ionic interaction.

  • PDF

Comparison of hemostatic efficacy and cytotoxicity of three ferric subsulfate- and chitosan-based styptics in different formulations using a rat tail bleeding model

  • Byun, Jae-Young;Lee, Soojung;Lee, Jeong Ik;Yoon, Hun-Young
    • Korean Journal of Veterinary Research
    • /
    • v.58 no.3
    • /
    • pp.119-124
    • /
    • 2018
  • This study was conducted to compare the hemostatic efficacy of three ferric subsulfate- and chitosan-based styptics as a powder and a gel containing ferric subsulfate and chitosan (FSC-PO and FSC-G, respectively) and a soaked pad containing ferric subsulfate and lidocaine (FSL-SP) using a rat tail bleeding model. The cytotoxicity of the styptics against L-929 mouse fibroblasts was also evaluated using a cell counting kit-8 assay. Four groups of 10 rats each were assigned to the three different styptics and a non-treated control groups. Rat tail tips were transected, after which styptics were applied with pressure. The wounds were observed for hemostasis for 3 min, then irrigated with saline to check for recurrent hemorrhage. L-929 mouse fibroblasts were exposed to extracts of the styptics (100 mg/mL) and their dilutions (1:10, 1:100, and 1:1,000). FSC-PO and FSC-G more effectively controlled initial hemorrhage than FSL-SP (p = 0.033). Additionally, FSC-PO and FSC-G more effectively maintained hemostasis than the control group (p = 0.02 and p < 0.01, respectively). However, all styptics showed enhanced cytotoxicity against L-929 cells in a dose-dependent manner. Therefore, although FSC-PO and FSC-G would be recommended to control hemorrhage, the benefits of styptics must be balanced against the clinical significance of their cytotoxicity.

Integrated Watershed Modeling Under Uncertainty (불확실성을 고려한 통합유역모델링)

  • Ham, Jong-Hwa;Yoon, Chun-Gyoung;Loucks, Daniel P.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.13-22
    • /
    • 2007
  • The uncertainty in water quality model predictions is inevitably high due to natural stochasticity, model uncertainty, and parameter uncertainty. An integrated modeling system under uncertainty was described and demonstrated for use in watershed management and receiving-water quality prediction. A watershed model (HSPF), a receiving water quality model (WASP), and a wetland model (NPS-WET) were incorporated into an integrated modeling system (modified-BASINS) and applied to the Hwaseong Reservoir watershed. Reservoir water quality was predicted using the calibrated integrated modeling system, and the deterministic integrated modeling output was useful for estimating mean water quality given future watershed conditions and assessing the spatial distribution of pollutant loads. A Monte Carlo simulation was used to investigate the effect of various uncertainties on output prediction. Without pollution control measures in the watershed, the concentrations of total nitrogen (T-N) and total phosphorous (T-P) in the Hwaseong Reservoir, considering uncertainty, would be less than about 4.8 and 0.26 mg 4.8 and 0.26 mg $L^{-1}$, respectively, with 95% confidence. The effects of two watershed management practices, a wastewater treatment plant (WWTP) and a constructed wetland (WETLAND), were evaluated. The combined scenario (WWTP + WETLAND) was the most effective at improving reservoir water quality, bringing concentrations of T-N and T-P in the Hwaseong Reservoir to less than 3.54 and 0.15 mg ${L^{-1}$, 26.7 and 42.9% improvements, respectively, with 95% confidence. Overall, the Monte Carlo simulation in the integrated modeling system was practical for estimating uncertainty and reliable in water quality prediction. The approach described here may allow decisions to be made based on probability and level of risk, and its application is recommended.

Exploiting W. Ellison model for seawater communication at gigahertz frequencies based on world ocean atlas data

  • Tahir, Muhammad;Ali, Iftikhar;Yan, Piao;Jafri, Mohsin Raza;Jiang, Zexin;Di, Xiaoqiang
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.575-584
    • /
    • 2020
  • Electromagnetic (EM) waves used to send signals under seawater are normally restricted to low frequencies (f) because of sudden exponential increases of attenuation (𝛼) at higher f. The mathematics of EM wave propagation in seawater demonstrate dependence on relative permeability (𝜇r), relative permittivity (𝜀r), conductivity (𝜎), and f of transmission. Estimation of 𝜀r and 𝜎 based on the W. Ellison interpolation model was performed for averaged real-time data of temperature (T) and salinity (S) from 1955 to 2012 for all oceans with 41 088 latitude/longitude points and 101 depth points up to 5500 m. Estimation of parameters such as real and imaginary parts of 𝜀r, 𝜀r', 𝜀r", 𝜎, loss tangent (tan 𝛿), propagation velocity (Vp), phase constant (𝛽), and α contributes to absorption loss (La) for seawater channels carried out by using normal distribution fit in the 3 GHz-40 GHz f range. We also estimated total path loss (LPL) in seawater for given transmission power Pt and antenna (dipole) gain. MATLAB is the simulation tool used for analysis.

Estimation of Nutrients Reduction Rates to Prevent Eutrophication on the Hwaong Reservoir (화옹호의 부영양화 방지를 위한 영양염류 삭감률 산정)

  • Kim, Mi-Ah;Kim, Young-Hee;Lee, Hong-Keun;Hwang, Dae-Ho;Kim, Ji-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.589-596
    • /
    • 2004
  • In this study, the reduction rates of nutrients were suggested to prevent eutrophication on the Hwaong reservoir in the year of 2008 and 2012. With EPA's WASP6 model, future water quality were simulated. In 2008, T-N would be 1.36mg/L and T-P 0.100mg/L on average. ; In 2012, T-N 2.66mg/L and T-P 0.128mg/L. With all the water quality management plans that the government authorities are carrying out, these results indicate that the reservoir would be reach the eutrophic or hypertrophic state according to the Vollenweider's trophic states. Therefore, the Hwaong reservoir requires additional plans for nutrients management. Here, the target water quality to prevent eutrophication of the reservoir sets into mesotrophic state ; T-N 0.475mg/L and T-P 0.02mg/L.(median of Vollenweider index for mesotropphic state) The reduction rates of nutrients on Namyang and Eoeun streams were estimated with uniform treatment method to meet the goal. The results showed that nutrients from two streams should be reduced up to 78% in 2008, and 84% in 2012. Since the ratio of T-N/T-P would be higher than 16 at target years, T-N was not considered as the limiting factor and was not reduced.