• Title/Summary/Keyword: L-모멘트비

Search Result 56, Processing Time 0.17 seconds

Eccentric Axial Loading Test for Concrete-Encased L-section Columns using 800MPa Steel and 100MPa Concrete (800MPa 강재 및 100MPa 콘크리트를 적용한 ㄱ형 강재 매입형 합성기둥의 편심압축실험)

  • Kim, Chang-Su;Park, Hong Gun;Lee, Ho Jun;Choi, In Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.209-222
    • /
    • 2013
  • Eccentric axial loading test was performed for concrete-encased columns using 800MPa steel and 100MPa concrete. To maximize the contribution of the high-strength steel, L-shaped steel sections were placed at four corners, and connected to each other by lattices, links, or battens. Compared to a H-section of the same area, the moment-arm and strain of the L-sections are increased. Also, the corner L-sections provide good lateral confinement to concrete core. The test results showed that the peak strength and effective flexural stiffness of the L-section columns were increased by more than 1.4 times those of the H-section column.

The Analysis of Arbitrarily Shaped Microstrip Patch Antennas using the MPIE (MPIE를 이용한 임의의 형상을 갖는 마이크로스트립 패치 안테나의 해석)

  • 정대호;김태원;김정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.8
    • /
    • pp.1059-1068
    • /
    • 1993
  • We will put the emphasis on the analysis of arbitrarily shaped microstrip antennas. The most general and rigorous treatment of microstrip antennas is given by the electric field integral equation(EFIE), usally formulated in the spectral domain. In this paper, we use a modification of EFIE, called the mixed potential integral equation(MPIE) , and we solve it in the space domain. This technique uses Green's functions associated with the scalar and vector potential which are calculated by using stratified media theory and are expressed as Sommerfeld integrals. The integral equation is solved by a moment's method using rooftop subsectional basis function. Thus, microstrip patches of any shape can be analysed at any frequency and for any substrate. Numerical results for a rectangular patch and for a L-shaped patch are given and compared with measured values.

  • PDF

Nonlinear Analysis of CFT Truss Girder with the Arch-shaped Lower Chord (아치형상의 하현재를 갖는 CFT 트러스 거더의 재료 비선형 해석)

  • Song, Na-Young;Choung, Chul-Hun;Kim, Young-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6A
    • /
    • pp.625-639
    • /
    • 2009
  • Experimental and analytical studies are performed on the mechanical behavior of concrete-filled tubular(CFT) truss girders for different f/L ratios. Bending tests are conducted on two CFT truss girder specimens to determine fundamental structural characteristics such as the strength and deformation properties. Nonlinear material models for CFT members subjected to an axial compressive force are compared in this paper by using the nonlinear finite element program, ABAQUS. Previous researchers have proposed several nonlinear stress-strain models of confined concrete. In this study, the nonlinear analyses are performed applying several stress-strain models for confined concrete proposed by Mander, Sakino, Han, Susantha and Ellobody, and the results are compared with the experimental results in terms of load-deflection and load-strain relationships. Based on the comparisons of the load-deflection relationships, the models proposed by Mander and Susantha provide a maximum load about 12.0~13.8% higher and that by Sakino gives a maximum load about 7.6% higher than the experimental results. The models proposed by Han and Ellobody give a maximum load only about 0.2~1.2% higher than the test results, showing the best agreement among the proposed stress-strain models. However, the load-strain relations predicted by the existing models generally provide conservative results exhibiting larger strains than the experimental data.

Development of IDF Curves under Non-Stationary for Agricultural Reservoir Watershed (비정상성을 고려한 농업용저수지 유역의 IDF 곡선 분석)

  • Ryu, Jeong Hoon;Kang, Moon Seong;Song, Inhong;Park, Jihoon;Jun, Sang Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.596-596
    • /
    • 2015
  • 수공구조물 설계의 기본이 되는 설계홍수량은 정상성 (Stationary) 가정 하에 산정되고 있다. 정상성은 분포형의 매개변수들이 시간에 따라 변화하지 않는 것을 의미한다. 그러나 최근 기후변화로 인한 극치사상의 크기와 빈도가 비정상적인 증가 추세를 나타내고 있어 강우자료의 변화 특성을 정확하게 파악하기 위해서는 비정상성 (Non-Stationary)에 대한 고려가 필요한 실정이다. 따라서 본 연구에서는 비정상성을 고려한 미래 IDF (Intensity-Duration-Frequency) 곡선을 산정하고, 기후변화에 의한 IDF 곡선의 특성 변화를 분석하고자 한다. 연구대상지로 충청남도 공주시에 위치한 계룡저수지를 선정하였고, 계룡저수지에 인접한 대전 관측소의 과거 강우자료 (1981-2010년)를 수집하였다. 또한 기상청에서 제공하는 RCP4.5 시나리오 기반의 미래 강우자료를 편의보정하여 3개 기간 (2011-2040년, 2041-2070년, 2071-2100년)에 대한 미래 강우자료를 구축하였고, 지속시간별 연최대치 강우자료를 추출하여 경향성 분석 및 비정상성 빈도해석을 실시하였다. 강우자료의 확률분포형과 매개변수 추정방법으로는 GEV (Generalized Extreme Value)분포와 L-모멘트법을 선정하였다. 이를 바탕으로 과거 및 미래 기간별 IDF 곡선을 산정하였으며, 그 특성을 비교분석하였다. 본 연구에서 도출한 IDF 곡선은 계룡저수지의 설계한도를 재검토하는데 활용될 수 있으며, 본 연구에서 제시한 방법은 기후변화에 따른 농업용저수지의 안정성 검토에 사용할 수 있을 것으로 사료된다.

  • PDF

Density Functional Study on Correlation between Magnetism and Crystal Structure of Fe-Al Transition Metal Compounds (Fe-Al 전이금속 화합물의 자성과 결정구조의 상관관계에 대한 밀도범함수연구)

  • Yun, Won-Seok;Kim, In-Gee
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.2
    • /
    • pp.43-47
    • /
    • 2011
  • It is known that the Fe-Al transition metal compounds have a lot of disagreement about structural stability and magnetism. In this study, the correlation between magnetism and atomic structure of ordered $B_2$, $L1_2$, and $D0_3$ structured Fe-Al compounds has been investigated using the all-electron full-potential linearized augmented plane wave (FLAPW) method based on the generalized gradient approximation (GGA). We found that considered all the structures were calculated to be stabilized in a ferromagnetic state. The calculated spin magnetic moments of the Fe atoms for B2 and $L1_2$ structures were 0.771 and 2.373 ${\mu}_B$, respectively, and that of Fe(I) and Fe(II) in $D0_3$ structure calculated to be 2.409 ${\mu}_B$, 1.911 ${\mu}_B$, respectively. In order to investigate structural stability between $L1_2$ and $D0_3$ structures, we performed the formation enthalpy calculations. As a result, the $D0_3$ structure is found to be more favorable than $L1_2 one by energy difference 16 meV/atom, which is well consistent with the experimental observation. We understood about structural stability and magnetism for Fe-Al compounds in terms of analysis of their atomic and electronic structures.

Initial Imperfection and Axial Strength of Struts with Octagonal Hollow Section fabricated from HR Plate (열연강판 팔각강관 버팀보의 초기편심과 축방향 압축강도)

  • Jo, Jae Byung
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • Developed in this study were Octagonal-hollow-section(OHS) struts, whose compressive strengths against flexural and local buckling is higher than H-shape or rectangular-hollow-section(RHS) struts with the same unit weight. OHS members are also advantageous in handling and storing compared to circular hollow sections(CHS). OHS members were fabricated from HR Plates by cold forming and fillet welding. 5 numbers of 20m long OHS struts were assembled, each of which consist of two 9.6m long OHS member and two end connection elements made of cast iron. The compressive strength of the OHS strut was evaluated by comparing the test results, design codes and FEM analysis each other. Test results show that all of the struts have almost same or larger compressive strength than Korean Road Bridge Design Code(KRBDC) (2012). The initial imperfections can be estimated by using measured strains and are turned out to be less than L/450 for all the struts tested. The results of FEM analysis show that the variation of initial imperfection has less effects on the compressive strength for struts with vertical surcharge than for those with self-weight only, while the strength decreases as the initial imperfection increases. As the result of this study, the allowable initial imperfection for 20m long OHS struts is recommended to be less than L/350 on job sites.

Laterally Unbraced Length for Preventing Inelastic Lateral-Torsional Buckling of High-Strength Steel Beams (고강도 강재보의 비탄성 횡-비틀림좌굴 제어를 위한 횡지지 거리)

  • Park, Chang Hee;Lee, Cheol Ho;Han, Kyu Hong;Kim, Jin Ho;Lee, Seung Eun;Ha, Tae Hyu;Kim, Jin Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.115-130
    • /
    • 2013
  • In this study, lateral-torsional buckling (LTB) strength of high-strength H-beams built up from 800MPa tensile-strength steel was experimentally and analytically evaluated according to current lateral stability provisions (KBC 2009, AISC-LRFD 2010). The motivation was to evaluate whether or not current LTB provisions, which were originally developed for ordinary steel with different stress-strain characteristics, are still applicable to high-strength steel. Two sets of compact-section specimens with relatively low (Set A) or high (Set B) warping stiffness were prepared and tested under uniform moment loading. Laterally unbraced lengths of the test specimens were controlled such that inelastic LTB could be induced. All specimens exhibited LTB strength exceeding the minimum limit required by current provisions by a sufficient margin. Moreover, some specimen in Set A reached a rotation capacity required for plastic design, although its laterally unbraced length belonged to the inelastic LTB range. All the test results indicated that extrapolation of current provisions to high-strength steel is conservative. In order to further analyze the test results, the relationship between inelastic moment and laterally unbraced length was also derived in explicit form for both ordinary- and high-strength steel based on the effective tangent modulus of inelastic section. The analytical relationship derived again showed that extrapolation of current laterally unbraced length limit leads to a conservative design in the case of high-strength steel and that the laterally unbraced length to control the inelastic LTB behavior of high-strength steel beam should be specified by including its unique post-yield strain-hardening characteristics.

Dynamic Modeling and Control Techniques for Multi-Rotor Flying Robots (멀티로터 무인비행로봇 동역학적 모델링 및 제어기법 연구)

  • Kim, Hyeon;Jeong, Heon Sul;Chong, Kil To;Lee, Deok Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.137-148
    • /
    • 2014
  • A multi-rotor is an autonomous flying robot with multiple rotors. Depending on the number of the rotors, multi-rotors are categorized as tri-, quad-, hexa-, and octo-rotor. Given their rapid maneuverability and vertical take-off and landing capabilities, multi-rotors can be used in various applications such as surveillance and reconnaissance in hostile urban areas surrounded by high-rise buildings. In this paper, the unified dynamic model of each tri-, quad-, hexa-, and octo-rotor are presented. Then, based on derived mathematical equations, the operation and control techniques of each multi-rotor are derived and analyzed. For verifying and validating the proposed models, operation and control technique simulations are carried out.

The Electronic Structure and Magnetism of bcc Rh(001) Surface (체심 입방구조 Rh(001) 표면의 전자구조와 자성)

  • Cho, L.H.;Bialek, B.;Lee, J.I.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.6
    • /
    • pp.206-210
    • /
    • 2008
  • According to the recent reports the bulk bcc Rh is ferromagnetic with a small difference of energy compared to paramagnetic state. In this study, the electronic structure and magnetism for bcc Rh(001) surface are investigated by means of the all-electron full potential linearized augmented plane wave method within the generalized gradient approximation. It is found that the surface ferromagnetic state is preferable over the paramagnetic one. For unrelaxed system, the magnetic moment of the surface layer, $0.48{\mu}B$, is slightly increased comparing with the bulk value, $0.41{\mu}B$ while the value of the subsurface layer, $0.23{\mu}B$, is much smaller than the bulk value. The total energy and atomic force calculations show that the surface layer is relaxed downward and the subsurface layer moves upward to reduce the layer distance between the surface and subsurface layers by 7.0 %. The relaxation effect leads to weakening the surface magnetic properties. Specifically, the value of the magnetic moment of the surface atom is decreased to $0.36{\mu}B$. Since the spin polarization of the subsurface layer is only $0.14{\mu}B$, it is concluded that the bcc Rh(001) surface is rather weakly ferromagnetic.

Effect of Pile Construction on Lateral Behavior of Single Rigid Pile in Sand (사질토 지반에서 단일 강성말뚝의 수평거동에 대한 시공방법의 영향)

  • 김병탁;김영수;서인식
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.29-44
    • /
    • 1999
  • This paper shows the results of model tests on the lateral behavior of single rigid pile, which was constructed by driving, in homogeneous and non-homogeneous (two layered) NakDong River sands. The purpose of the present paper is to investigate the effect of ratio of lower layer thickness to embedded pile length, relative density of sand and pile construction conditions (Driven & Embedded piles) on the characteristics of lateral behavior of single pile. These effects can be quantified only by the results of model tests. As a model result, the lateral behavior depends upon the pile construction condition in loose-density soil more than in high-density soil. If the pile construction depends upon driving construction, the decrease of deflection remarkably increases for both loose homogeneous sand and non-homogeneous soil$(E_{h1}/E_{h2}/=0.18)$ with high thickness of upper layer but the decrease of maximum bending moment shows the opposite result to the decrease of deflection. And, with respect to deflection, it was found that the deflection ratio $(y_{Driven}y_{Embedded})$ of embedded to driven piles has the ranges of 0.65 - 0.88 $(D_r=90%)$0.38 - 0.65 $(D_r=61.8%)$ for each relative density of homogeneous soil and the range of 0.6 - 0.88 for non-homogeneous soil. Also, in this study, the experimental equation for the effects of drop height (DH) and H/L on the ratios of $y_D/y_E\; and MBM_D/MBM_ E$ is suggested from model tests.

  • PDF