DOI QR코드

DOI QR Code

Eccentric Axial Loading Test for Concrete-Encased L-section Columns using 800MPa Steel and 100MPa Concrete

800MPa 강재 및 100MPa 콘크리트를 적용한 ㄱ형 강재 매입형 합성기둥의 편심압축실험

  • Kim, Chang-Su (Samsung C & T Corporation, Engineering & Construction Group) ;
  • Park, Hong Gun (Seoul National Univ., Dept. of Architecture and Architectural Engineering) ;
  • Lee, Ho Jun (Seoul National Univ., Dept. of Architecture and Architectural Engineering) ;
  • Choi, In Rak (Research Institute of Industrial Science & Technology, Steel Structure Research Div.)
  • 김창수 (삼성물산 건설부문, 기술연구센터) ;
  • 박홍근 (서울대학교, 건축학과) ;
  • 이호준 (서울대학교, 건축학과) ;
  • 최인락 (포항산업과학연구원, 강구조연구소)
  • Received : 2012.11.12
  • Accepted : 2013.03.25
  • Published : 2013.04.27

Abstract

Eccentric axial loading test was performed for concrete-encased columns using 800MPa steel and 100MPa concrete. To maximize the contribution of the high-strength steel, L-shaped steel sections were placed at four corners, and connected to each other by lattices, links, or battens. Compared to a H-section of the same area, the moment-arm and strain of the L-sections are increased. Also, the corner L-sections provide good lateral confinement to concrete core. The test results showed that the peak strength and effective flexural stiffness of the L-section columns were increased by more than 1.4 times those of the H-section column.

800MPa급 강재와 100MPa급 콘크리트를 적용한 매입형 합성기둥에 대하여 편심압축실험을 수행하였다. 강재단면의 모멘트팔길이와 변형(응력)을 증가시켜 고강도강재의 성능활용을 극대화할 수 있도록, ㄱ형 강재단면을 네 모서리에 집중 배치한 후, 래티스철근, 링크철근, 띠판을 이용하여 일체화하였다. 이 경우 강재단면의 강력한 횡구속효과로 인해 심부콘크리트의 성능도 개선된다. 실험결과 ㄱ형 강재 매입형 기둥은 H형 강재 매입형 기둥에 비하여 최대강도와 유효휨강성이 1.4배 이상 증가하였다.

Keywords

References

  1. 김창수, 박홍근, 최인락, 정경수, 김진호(2010) 800MPa 강재 및 100MPa 콘크리트를 적용한 매입형 합성기둥의 구조성능, 한국강구조학회논문집, 한국강구조학회, 제22권, 제5호, pp.497-509. Kim, C.S., Park, H.G., Choi, I.R., Chung, K.S., and Kim, J.H. (2010) Structural performance of concrete-encased steel columns using 800MPa steel and 100MPa concrete, Journal of Korean Society of Steel Construction, KSSC, Vol. 22, No. 5, pp.497-509 (in Korean).
  2. Ricles, J.M. and Paboojian, S.D. (1994) Seismic performance of steel-encased composite columns, J. Struct. Eng., Vol. 120, No. 8, pp.2474-2494. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:8(2474)
  3. Anslijn, R. and Janss, J. (1974) Le calcul de charges ultimes des colonnes metalliques enrobes de beton, C.R.I.F. Report MT89, Brussels.
  4. Oh, M.H., Ju, Y.K., Kim, M.H., and Kim, S.D. (2006) Structural performance of steel-concrete composite column subjected to axial and flexural loading, J. Asian Archit. Build. Eng., Vol. 5, No. 1, pp.153-160. https://doi.org/10.3130/jaabe.5.153
  5. Nakano, Y., Fujisawa, K., Nanba, T., Sakai, J., and Minami, K. (2006) Experimental study on elastic-plastic behavior of SRC columns with high strength steel, Memoirs of the Faculty of Eng., Fukuyama University, Vol. 30, pp.125-136.
  6. Bergmann, R., Puthli, R., and Fleischer, O. (2000) Behavior of composite columns using high strength steel sections, Proc., 4th Int. Conf. on Composite Constr. in Steel and Concrete, ASCE, pp. 528-538.
  7. Prickett, B. S. and Driver, R. G. (2006) Behavior of partially encased composite columns made with high performance concrete, Structural Engineering Report No. 262, Dept. Civil and Env. Eng., University of Alberta, Edmonton, Alberta, Canada.
  8. American Concrete Institute (2008) Building code requirements for structural concrete and commentary, ACI Committee 318, ACI 318-08, Farmington Hills, Mich.
  9. European Committee for Standardization (CEN) (2005) Design of composite steel and concrete structures-part 1-1: General rules and rules for buildings, Eurocode 4, Brussels, Belgium.
  10. American Institute of Steel Construction (2010) Specification for structural steel buildings, An American National Standard, ANSI/AISC 360-10, Chicago.
  11. Architectural Institute of Japan (2001) Standard for structural calculation of steel reinforced concrete structures, 5th Ed., AIJ.
  12. 김창수, 박홍근(2010) 초고층건축물 적용을 위한 고강도 강재 매입형 합성기둥, 한국강구조학회지, 한국강구조학회, 제22권, 제2호, pp.18-26. Kim, C.S. and Park, H.G. (2010) High Strength Steel-encased Concrete Columns for High-rise Buildings, Magazine of Korean Society of Steel Construction, KSSC, Vol. 22, No. 2, pp.18-26 (in Korean).
  13. 한국강구조학회 (2012) 강구조설계, 구미서관. Korean Society of Steel Construction (KSSC) (2012) Design of Steel Structures, Goomibook (in Korean).
  14. American Society for Testing and Materials (2001) Standard test method for compressive strength of cylindrical concrete specimens, ASTM C39/C39M-01, West Conshohocken, Penn.
  15. American Concrete Institute (1997) State-of-the-art report on high-strength concrete, ACI 363R-92, Detroit.
  16. American Society for Testing and Materials (2009) Standard test methods for tension testing of metallic materials, ASTM E8/E8M-09, West Conshohocken, Penn.
  17. El-Tawil, S. and Deierlein, G.G. (1999) Strength and ductility of concrete encased composite columns, J. Struct. Eng., Vol. 125, No. 9, pp.1009-1019. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:9(1009)
  18. Montuori, R. and Piluso, V. (2009) Reinforced concrete columns strengthened with angles and battens subjected to eccentric load, Engineering Structures, Vol. 31, No. 2, pp.539-550. https://doi.org/10.1016/j.engstruct.2008.10.005
  19. Mirza, S.A. and Tikka, T.K. (1999) Flexural stiffness of composite columns subjected to major axis bending, ACI Structural Journal, Vol. 96, No. 1, pp.19-28.

Cited by

  1. Eccentric Axial Load Test for Concrete-Filled Tubular Columns Encased with Precast Concrete vol.26, pp.1, 2014, https://doi.org/10.7781/kjoss.2014.26.1.031
  2. Cyclic Loading Tests for Prefabricated Composite Columns Using Steel Angle and Reinforcing Bar vol.25, pp.6, 2013, https://doi.org/10.7781/kjoss.2013.25.6.635
  3. Axial Compression Behavior of Concrete-Encased Steel Angle Columns Using High-Strength Steel vol.31, pp.6, 2013, https://doi.org/10.7781/kjoss.2019.31.6.381