• Title/Summary/Keyword: L-(+)-lactic acid

Search Result 1,644, Processing Time 0.024 seconds

Synthesis and Characterization of Poly(L-lactic acid-co-glycine-L-lactic acid) and Poly - ( L-1actic acid-co-gl ycine-L-methyl 1actic acid) (생체분해성 고분자의 합성 및 물성에 관한 연구(II) -Poly (L-lactic acid-co-glycine-L-lactic acid) 와 Poly- (L-lactic acid-co-glycine-L-methyl lactic acid))

  • Sung, Yong-Kiel;Song, Dae-Kyung;Park, Kyung-Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.225-232
    • /
    • 1988
  • Poly (L- lactic acid-co-glycine-L-lactic acid) and Poly (L-lactic acid-co-glycine-L- methyl lactic acid ) have been prepared by ring opening polymerization. The monomer 6, 6-dimethyl morpho-line-2, 5-dione was synthesized by the bromoisobutylation of 2-bromoisobutyryl bromide with glycin e. L-lactide, 6-methyl morpholine-2, 5-diode. and 6, 6-dimethyl morpholine-2, 5-diode have been used as starting materials for polydepsipeptides. The synthesized monomers and copolymers have been identified by NMR and FT-lR spa- ctrophotometer. The thermal propert ies and glass transition temperature(Tg) of the copolymers have been measured by differential scanning calorimetry. The Tg values of poly(L-lactic acid co-glycine-L-lactic acid) system are increased from $53^{\circ}C\; to\; 107^{\circ}C$ with increasing the mole fraction of 6-methyl morpholine-2, 5-diode. And the Tg values of poly(L-lactic acid co-glycine-L-methyl lactic acid) system are increased from $53^{\circ}C\;to\;138^{\circ}C$ with increasing the mole fraction of 6. 6-dimethyl morpholine-2, 5-diode The thermal stability of poly (L-lactic acid-co-glycine-L-methyl lactic acid) is slightly greta text than that of poly(L-lactic acid-co-glycine-L-lactic acid) due to the methyl group.

  • PDF

Production of Lactic Acid from Water Hyacinth by Lactobacillus spp. (부레옥잠을 이용한 Lactobacillus spp.의 젖산 생산)

  • Jullihar, Randy;Noh, Yong Ho;Park, Hye Min;Yun, Hyun Shik
    • KSBB Journal
    • /
    • v.31 no.1
    • /
    • pp.85-89
    • /
    • 2016
  • Lactic acid fermentations were conducted using water hyacinth. It is known that the pretreatment and enzyme hydrolysis process optimize the potential of water hyacinth. Lactic acid produced by using lactic acid bacteria. All cells were grown at $37^{\circ}C$ and initial pH 5.5. Lactic acid production was measured by HPLC. All Lactobacillus strains could produce lactic acid from pretreated water hyacinth. The highest lactic acid was achieved when lactic acid fermentation was carried out by L. delbrueckii for D-form and L. helveticus for L-form lactic acid production. The lactic acid concentration was 10.70 g/L by L. delbrueckii and it converted glucose in the medium to lactic acid, almost perfectly. Lactic acid production became higher when fermentation was carried out at a controlled pH 5.5. Lactic acid yield and productivity were 0.52 g/g and 0.19 g/L/h for L. helveticus, while L. delbrueckii was 0.64 g/g and 0.27 g/L/h. This study showed that water hyacinth medium could be alternative medium which can replace the complex and expensive medium for growing Lactobacillus strains in production of lactic acid.

Simultaneous Saccharification and Extractive Fermentation for Lactic Acid Production (동시당화 및 추출발효에 의한 Lactic Acid 생산)

  • 공창범;우창호;최실호;윤현희
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.212-219
    • /
    • 1999
  • lactic acid production from cellulose by simultaneous saccharification and fermentation(SSF) was studied. The SSF using cellulase enzyme Cytolase CL and Lactobacillus delbrueckii was strongly inhibited by the end product(lactic acid). An ion-exchange resin(RA-400) was used for in-situ product removal during SSF. The sorption capacity of the resin was 200mg/g-resin. The simple SSF and the extractive SSF resulted in lactic acid concentrations of 30.4g/L and 32.0g/L, respectively, at the initial substrate concentration of 50g/L. A model was developed to simulate the extractive SSF. The lactic acid conversion for the initial substrate of 100g/L was estimated to be improved from 60% to 09% by in-situ product removal. The experimentally determined kinectic parameters were pH dependent, and fitted as empirical expressions to establish their values at different pH's. Lactic acid productivity was predicted to be maximum at pH 4.5-5.0.

  • PDF

Production of L-Lactic Acid from Soluble Starch by Enterococcus sp. JA-27. (Enterococcus sp. JA-27에 의한 가용성 전분으로부터 L형 젖산의 생산)

  • 김경아;김미경;장경린;전홍기
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.3
    • /
    • pp.250-256
    • /
    • 2003
  • Lactic acid bacteria with amylolytic and acid producing activities can ferment starch directly to lactic acid thereby producing a monomer for the production of biodegradable poly lactic acid (PLA). In this study, the strain producing L-lactic acid from soluble starch was isolated from Nuruk. The isolated strain was identified as Enterococcus sp. through its morphological, cultural, biochemical characteristics as well as the 16S rDNA sequence analysis, and named Enterococcus sp. JA-27. Enterococcus sp. JA-27 produced exclusively L-lactic acid from soluble starch as a carbon source. The optimal conditions for the maximum production of L-lactic acid from Enterococcus sp. JA-27 were 30 C, pH 8, 1.5 % soluble starch as a substrate and 3.5 % tryptone as a nitrogen source, 0.1 % $K_2$$HPO_4$, 0.04 % $MgSO_4$. $7H_2$O, 0.014 % $MnSO_4$$.$4$H_2O$, 0.004% $FeSO_4$$.$$7H_2$O. Batch and fed batch culture were carried out and the former was more effective. L-Lactic acid production in the optimum medium was significantly increased in a 7 L jar fermenter, where the maximum L-lactic acid concentration was 3 g/L. For the purification of lactic acid in fermented broth, two stage ionexchange column chromatographies were employed and finally identified by HPLC.

Optimum Conditions for the Biological Production of Lactic Acid by a Newly Isolated Lactic Acid Bacterium, Lactobacillus sp. RKY2

  • Wee Young-Jung;Kim Jin-Nam;Yun Jong-Sun;Ryu Hwa-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.23-28
    • /
    • 2005
  • Lactic acid is a green chemical that can be used as a raw material for biodegradable polymer. To produce lactic acid through microbial fermentation, we previously screened a novel lactic acid bacterium. In this work, we optimized lactic acid fermentation using a newly isolated and homofermentative lactic acid bacterium. The optimum medium components were found to be glucose, yeast extract, $(NH_4)_{2}HPO_4,\;and\;MnSO_4$. The optimum pH and temperature for a batch culture of Lactobacillus sp. RKY2 was found to be 6.0 and $36^{\circ}C$, respectively. Under the optimized culture conditions, the maximum lactic acid concentration (153.9 g/L) was obtained from 200 g/L of glucose and 15 g/L of yeast extract, and maximum lactic acid productivity ($6.21\;gL^{-1}h^{-1}$) was obtained from 100 g/L of glucose and 20 g/L of yeast extract. In all cases, the lactic acid yields were found to be above 0.91 g/g. This article provides the optimized conditions for a batch culture of Lactobacillus sp. RKY2, which resulted in highest productivity of lactic acid.

Comparison of D- and L-Lactic Acid Contents in Commercial Kimchi and Sauerkraut

  • Yoon, Hyang-Sik;Son, Yeo-Jin;Han, Jin-Soo;Lee, Jun-Soo;Han, Nam-Soo
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.64-67
    • /
    • 2005
  • Commercial kimchi and sauerkraut were analyzed for their D- and L-lactic acid contents. Ranges of D- and L-lactic acid contents in commercial kimchi were 17-57 (38.51 mean) and 25-87 (64.47 mean) mM, respectively. Ratio of D-lactic acid on L-lactic acid (D/L) was 0.50-0.80 (0.60 mean). Ranges of D- and L-lactic acid contents in commercial sauerkraut were 68.96-103.62 (88.97 mean) and 74.46-82.26 (78.91 mean) mM, respectively, with D/L of 0.90-1.26 (1.13 mean). Results reveal kimchi and sauerkraut contained a significant amount of D-lactic acid, with sauerkraut showing a higher content than kimchi, while L-lactic acid contents were not significantly different.

Isolation of Microorganism with HIgh Productivity and Cultivation Optimization for Lactic Acid Production (고생산성 젖산생성균 분리 및 배양 최적화)

  • Cho, Kyu-Hong;Cho, Yun-Kyung;Hong, Seung-Suh;Lee, Hyun-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.1
    • /
    • pp.6-11
    • /
    • 1995
  • In order to screen microorganism producing lactic acid with high productivity from nature, we used a medium containing 100 g/l glucose and selected several microorganisms producing more than 80 g/l L-lactic acid. We investigated their physiological characteristics and compared them. The best microorganism was identified as Lactobacillus casei subsp. rhamnosus. The optimum pH for growth and production of lactic acid was 6.0 and this strain showed the highest growth rate at around 30$\circ$C , but the optimum temperature for lactic acid production was 45$\circ$C . The growth was inhibited proportionally from 50 g/l to 300 g/l of glucose and the maximal cell mass increased according to increasing the concentration of corn steep liquor (CSL) protein up to 30 g/l. In batch fermentation for lactic acid production, we produced 128 g/l L-lactic acid with 20 g/l CSL protein and 150 g/l glucose in 35 hours. In pH-stat fed-batch fermentation, we were able to produce 183 g/l L-lactic acid.

  • PDF

Probiotic Characteristics of Lactobacillus acidophilus KY1909 Isolated from Korean Breast-Fed Infant (한국인 유아 분변에서 분리한 Lactobacillus acidophilus KY1909의 프로바이오틱 특성)

  • Park, Jong-Gil;Yun, Suk-Young;Oh, Se-Jong;Shin, Jung-Gul;Baek, Young-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1244-1247
    • /
    • 2003
  • The purpose of this study was to isolate lactic acid bacteria that produced L(+) lactic acid from infant feces. Thirteen colonies were isolated with a MRS-plate containing 0.5% $CaCO_3$ to determine their ability to produce lactic acid. Based on their lactic acid production, 10 strains of Lactobacillus were identified to assess the ratio of lactate isomer using HPLC. A strain producing L-lactic acid was identified as Lactobacillus acidophilus, using API carbohydrate fermentation patterns and physiological tests, and named KY1909. The strain exhibited good acid tolerance in an artificial gastric juice as well as high bile resistance in MRS containing 0.5% bile acids. L. acidophilus KY1909 produced D(-) and L(+) lactic acid at a ratio of 6 : 94; whereas commercial strains of Lactobacillus acidophilus produced D(-) and L(+) lactic acid at a ratio of 1 : 1. These results demonstrate the L. acidophilus KY1909 can be utilized in fermented milk products and dietary supplements as a probiotic culture.

D(-) and L(+)-Lactic Acid Determination of Lactobacillus acidophilus during Fermentation and Storage Period (Lactobacillus acidophilus NCFM의 배양 및 저장 중 D(-) 및 L(+)-lactic acid의 변화)

  • Lee, Kyung-Wook;Shin, Yong-Kook;Baick, Seung-Chun
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.168-174
    • /
    • 1998
  • The amount of D(-)-lactic acid in fermented dairy products is very important because the rate of metabolism of D(-)-lactic acid is lower than that of L(+)-lactic acid. The purpose of this study was to investigate the optimum condition during fermentation and storage of yogurt for the formation of isomers of lactic acid by Lactobacillus acidophilus NCFM. The production of acid was excellent at $37^{\circ}C$ of fermentation and the ratio of D(-)-lactic acid was also lower than that of other conditions such as $35^{\circ}C{\;}and{\;}40^{\circ}C$. Among shaking and non-shaking treatment under aerobic condition and anaerobic condition, non-shaking treatment under aerobic condition was the best condition at the production of acid and L(+)-lactic acid during fermentation. During storage at low temperature, a larger amount of L(+)-lactic acid was produced than at higer storage temperature.

  • PDF

Effect of Lactic Acid Bacteria on D- and L-Lactic Acid Contents of Kimchi

  • Jin, Qing;Yoon, Hyang-Sik;Han, Nam-Soo;Lee, Jun-Soo;Han, Jin-Soo
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.948-953
    • /
    • 2006
  • The D-form of lactic acid is frequently detected in fermented foods, and an excessive dietary intake of D-lactic acid may induce metabolic stress in both infants and patients. This work was carried out to determine the prevailing microorganisms relevant to the accumulation of D-lactic acid in kimchi. Leuconostoc (Leuc.) mesenteroides and Leuc. citreum primarily synthesized D-lactate with a small quantity of L-form. Leuc. gelidum and Leuc. inhae evidenced patterns similar to this. Lactobacillus (Lb.) plantarum and Lb. brevis were shown to convert glucose into a balanced mixture of D-/L-lactic acid, whereas Lb. casei principally synthesized L-lactic acid and a very small quantity of D-lactic acid. When kimchi was incubated at 8 or $22^{\circ}C$, D-lactic acid was over-produced than L-form. Leuconostoc was determined as the primary producer between the initial to mid-phase of fermentation and Lb. plantarum or Lb. brevis seemed to boost D-lactic acid content during later stage of acid accumulation.