• Title/Summary/Keyword: Krylov method

Search Result 76, Processing Time 0.022 seconds

Comparison of model order reductions using Krylov and modal vectors for transient analysis under seismic loading

  • Han, Jeong Sam
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.643-651
    • /
    • 2020
  • Generally, it is necessary to perform transient structural analysis in order to verify and improve the seismic performance of high-rise buildings and bridges against earthquake loads. In this paper, we propose the model order reduction (MOR) method using the Krylov vectors to perform seismic analysis for linear and elastic systems in an efficient way. We then compared the proposed method with the mode superposition method (MSM) by using the limited numbers of modal vectors (or eigenvectors) calculated from the modal analysis. In the calculation, the data of the El Centro earthquake in 1940 were adopted for the seismic loading in the transient analysis. The numerical accuracy and efficiency of the two methods were compared in detail in the case of a simplified high-rise building.

A MODEL-ORDER REDUCTION METHOD BASED ON KRYLOV SUBSPACES FOR MIMO BILINEAR DYNAMICAL SYSTEMS

  • Lin, Yiqin;Bao, Liang;Wei, Yimin
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.293-304
    • /
    • 2007
  • In this paper, we present a Krylov subspace based projection method for reduced-order modeling of large scale bilinear multi-input multi-output (MIMO) systems. The reduced-order bilinear system is constructed in such a way that it can match a desired number of moments of multi-variable transfer functions corresponding to the kernels of Volterra series representation of the original system. Numerical examples report the effectiveness of this method.

Jacobian-free Newton Krylov two-node coarse mesh finite difference based on nodal expansion method

  • Zhou, Xiafeng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3059-3072
    • /
    • 2022
  • A Jacobian-Free Newton Krylov Two-Nodal Coarse Mesh Finite Difference algorithm based on Nodal Expansion Method (NEM_TNCMFD_JFNK) is successfully developed and proposed to solve the three-dimensional (3D) and multi-group reactor physics models. In the NEM_TNCMFD_JFNK method, the efficient JFNK method with the Modified Incomplete LU (MILU) preconditioner is integrated and applied into the discrete systems of the NEM-based two-node CMFD method by constructing the residual functions of only the nodal average fluxes and the eigenvalue. All the nonlinear corrective nodal coupling coefficients are updated on the basis of two-nodal NEM formulation including the discontinuity factor in every few newton steps. All the expansion coefficients and interface currents of the two-node NEM need not be chosen as the solution variables to evaluate the residual functions of the NEM_TNCMFD_JFNK method, therefore, the NEM_TNCMFD_JFNK method can greatly reduce the number of solution variables and the computational cost compared with the JFNK based on the conventional NEM. Finally the NEM_TNCMFD_JFNK code is developed and then analyzed by simulating the representative PWR MOX/UO2 core benchmark, the popular NEACRP 3D core benchmark and the complicated full-core pin-by-pin homogenous core model. Numerical solutions show that the proposed NEM_TNCMFD_JFNK method with the MILU preconditioner has the good numerical accuracy and can obtain higher computational efficiency than the NEM-based two-node CMFD algorithm with the power method in the outer iteration and the Krylov method using the MILU preconditioner in the inner iteration, which indicates the NEM_TNCMFD_JFNK method can serve as a potential and efficient numerical tool for reactor neutron diffusion analysis module in the JFNK-based multiphysics coupling application.

A Study On The Eigen-properties of A 2-D Square Waveguide by the Krylov-Schur Iteration Method (Krylov-Schur 순환법에 의한 2차원 사각도파관에서의 고유치 문제에 관한 연구)

  • Kim, Yeong Min;Kim, Dongchool;Lim, Jong Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.28-35
    • /
    • 2013
  • The Krylov-Schur algorithm has been applied to reveal the eigen-properties of the wave guide having the square cross section. The eigen-matrix equation has been constructed from FEM with the basis function of the tangential edge-vectors of the triangular element. This equation has been treated firstly with Arnoldi decomposition to obtain a upper Hessenberg matrix. The QR algorithm has been carried out to transform it into Schur form. The several eigen values satisfying the convergent condition have appeared in the diagonal components. The eigen-modes for them have been calculated from the inverse iteration method. The wanted eigen-pairs have been reordered in the leading principle sub-matrix of the Schur matrix. This sub-matrix has been deflated from the eigen-matrix equation for the subsequent search of other eigen-pairs. These processes have been conducted several times repeatedly. As a result, a few primary eigen-pairs of TE and TM modes have been obtained with sufficient reliability.

On the non-linearities of ship's restoring and the Froude-Krylov wave load part

  • Matusiak, Jerzy Edward
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.111-115
    • /
    • 2011
  • When formulating a general, non-linear mathematical model of ship dynamics in waves the hydrostatic forces and moments along with the Froude-Krylov part of wave load are usually concerned. Normally radiation and the diffraction forces are regarded as linear ones. The paper discusses briefly few approaches, which can be used in this respect. The concerned models attempt to model the non-linearities of the surface waves; both regular and the irregular ones, and the nonlinearities of the restoring forces and moments. The approach selected in the Laidyn method, which is meant for the evaluation of large amplitude motions in the 6 degrees-of-freedom, is presented in a bigger detail. The workability of the method is illustrated with the simulation of ship motions in irregular stern quartering waves.

Model order reduction for Campbell diagram analysis of shaft-disc-blade system in 3D finite elements

  • Phuor, Ty;Yoon, GilHo
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.411-428
    • /
    • 2022
  • This paper presents the Campbell diagram analysis of the rotordynamic system using the full order model (FOM) and the reduced order model (ROM) techniques to determine the critical speeds, identify the stability and reduce the computational time. Due to the spin-speed-dependent matrices (e.g., centrifugal stiffening matrix), several model order reduction (MOR) techniques may be considered, such as the modal superposition (MS) method and the Krylov subspace-based MOR techniques (e.g., Ritz vector (RV), quasi-static Ritz vector (QSRV), multifrequency quasi-static Ritz vector (MQSRV), multifrequency/ multi-spin-speed quasi-static Ritz vector (MMQSRV) and the combined Ritz vector & modal superposition (RV+MS) methods). The proposed MMQSRV method in this study is extended from the MQSRV method by incorporating the rotational-speed-dependent stiffness matrices into the Krylov subspace during the MOR process. Thus, the objective of this note is to respond to the question of whether to use the MS method or the Krylov subspace-based MOR technique in establishing the Campbell diagram of the shaft-disc-blade assembly systems in three-dimensional (3D) finite element analysis (FEA). The Campbell diagrams produced by the FOM and various MOR methods are presented and discussed thoroughly by computing the norm of relative errors (ER). It is found that the RV and the MS methods are dominant at low and high rotating speeds, respectively. More precisely, as the spinning velocity becomes large, the calculated ER produced by the RV method is significantly increased; in contrast, the ER produced by the MS method is smaller and more consistent. From a computational point of view, the MORs have substantially reduced the time computing considerably compared to the FOM. Additionally, the verification of the 3D FE rotordynamic model is also provided and found to be in close agreement with the existing solutions.

Synthesis of Symmetric 1-D 5-neighborhood CA using Krylov Matrix (Krylov 행렬을 이용한 대칭 1차원 5-이웃 CA의 합성)

  • Cho, Sung-Jin;Kim, Han-Doo;Choi, Un-Sook;Kang, Sung-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1105-1112
    • /
    • 2020
  • One-dimensional 3-neighborhood Cellular Automata (CA)-based pseudo-random number generators are widely applied in generating test patterns to evaluate system performance and generating key sequence generators in cryptographic systems. In this paper, in order to design a CA-based key sequence generator that can generate more complex and confusing sequences, we study a one-dimensional symmetric 5-neighborhood CA that expands to five neighbors affecting the state transition of each cell. In particular, we propose an n-cell one-dimensional symmetric 5-neighborhood CA synthesis algorithm using the algebraic method that uses the Krylov matrix and the one-dimensional 90/150 CA synthesis algorithm proposed by Cho et al. [6].

STRAUM-MATXST: A code system for multi-group neutron-gamma coupled transport calculation with unstructured tetrahedral meshes

  • MyeongHyeon Woo;Ser Gi Hong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4280-4295
    • /
    • 2022
  • In this paper, a new multi-group neutron-gamma transport calculation code system STRAUM-MATXST for complicated geometrical problems is introduced and its development status including numerical tests is presented. In this code system, the MATXST (MATXS-based Cross Section Processor for SN Transport) code generates multi-group neutron and gamma cross sections by processing MATXS format libraries generated using NJOY and the STRAUM (SN Transport for Radiation Analysis with Unstructured Meshes) code performs multi-group neutron-gamma coupled transport calculation using tetrahedral meshes. In particular, this work presents the recent implementation and its test results of the Krylov subspace methods (i.e., Bi-CGSTAB and GMRES(m)) with preconditioners using DSA (Diffusion Synthetic Acceleration) and TSA (Transport Synthetic Acceleration). In addition, the Krylov subspace methods for accelerating the energy-group coupling iteration through thermal up-scatterings are implemented with new multi-group block DSA and TSA preconditioners in STRAUM.

CONVERGENCE AND BREAKDOWN STUDY OF KRYLOV METHODS FOR NONSYMMETRIC LINEAR SYSTEMS

  • Yun, Jae-Heon
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.4
    • /
    • pp.981-995
    • /
    • 1995
  • This paper first establishes some conditions for preconditioner under which PGCR does not break down. Next, VPGCR algorithm whose preconditioners can be easily obtained is introduced and then its breakdown and convergence properties are discussed. Lastly, implementation details of VPGCR are described and then numerical results of VPGCR with a certain criterion guaranteeing no breakdown are compared with those of restarted GMRES.

  • PDF

Newton-Krylov Method for Compressible Euler Equations on Unstructured Grids

  • Kim Sungho;Kwon Jang Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.153-159
    • /
    • 1998
  • The Newton-Krylov method on the unstructured grid flow solver using the cell-centered spatial discretization oi compressible Euler equations is presented. This flow solver uses the reconstructed primitive variables to get the higher order solutions. To get the quadratic convergence of Newton method with this solver, the careful linearization of face flux is performed with the reconstructed flow variables. The GMRES method is used to solve large sparse matrix and to improve the performance ILU preconditioner is adopted and vectorized with level scheduling algorithm. To get the quadratic convergence with the higher order schemes and to reduce the memory storage. the matrix-free implementation and Barth's matrix-vector method are implemented and compared with the traditional matrix-vector method. The convergence and computing times are compared with each other.

  • PDF