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CONVERGENCE AND BREAKDOWN
STUDY OF KRYLOV METHODS FOR
NONSYMMETRIC LINEAR SYSTEMS

JAE HEON YUN

ABSTRACT. This paper first establishes some conditions for precondi-
tioner under which PGCR does not break down. Next, VPGCR algo-
rithm whose preconditioners can be easily obtained is introduced and
then its breakdown and convergence properties are discussed. Lastly,
implementation details of VPGCR are described and then numerical re-
sults of VPGCR with a certain criterion guarantecing no breakdown are
compared with those of restarted GMRES.

. 1. Introduction

The classical Conjugate Gradient (CG ) method of Hestenes and Stiefel
[6] with some preconditioning technique is one of the most effective iter-
ative methods for solving large sparse symmetric positive definite linear
systems. However, this algorithm fails in general for nonsymmetric linear
systems. In the last 15 years, a large number of generalizations of the
CG method which are based on Krylov subspaces have been proposed
for solving nonsymmetric linear systems [2, 3, 4, 10, 11, 12]. The Gen-
eralized Conjugate Residual (GCR) method [2], the BCG [3] method,
the Generalized Minimum Residual (GMRES) method [10], the CGS
method [11], and the Quasi-Minimal Residual (QMR) method [4] are
typical examples of Krylov iterative methods for solving nonsymmetric
linear systems.
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suffer from breakdowns (more precisely, division by 0). In finite preci-
sion arithmetic, such exact breakdowns are very unlikely; however, near-
breakdowns may occur, leading to numerical instabilities in subsequent
iterations. GMRES and QMR with look-ahead procedure do not break
down, but GMRES has a stagnation problem (i.e., it does not converge
to the exact solution until the last iteration step) and look-ahead QMR
method suffers from an incurable breakdown (see [4] for details)

Throughout this paper, we consider the linear system Az = b, where
A € R™™ is a large sparse nonsymmetric nonsingular matrix, x € R",
and b € R™. Given a set of vectors {po,p1,... ,Pk}, let (po,p1,... ,pk) de-
note the subspace spanned by {pg,p1,... ,pr}. For a given vector ¢y, let
the m-th Krylov subspace I (A, co) denote the subspace (co, Aco, ...,
A™1eg). (+,+) denotes the Euclidean inner product on R™ x R™, and
Il - || denotes the Euclidean vector norm on R" as well as the matrix
norm associated with the Euclidean vector norm.

In [13], it was shown that the preconditioned GCR (PGCR) does not
break down until convergence if a preconditioner satisfies a certain con-
dition. This paper first establishes some new conditions for precondi-
tioner under which PGCR does not break down, and then it is shown
that these conditions for preconditioner are weaker than the condition
stated in [13]. Since PGCR uses a fixed preconditioner during all itera-
tion processes, it is very difficult to find the preconditioner guaranteeing
no breakdown until convergence. To this end, VPGCR algorithm whose
preconditioner varies every iteration and can be easily found is intro-
duced, and its breakdown and convergence properties are discussed. Sub-
sequently, details of implementation of VPGCR algorithm are given and
then numerical results of VPGCR with a certain criserion guaranteeing
no breakdown are compared with those of restarted GMRES. Finally,
some concluding remarks are drawn.

2. The Preconditioned GCR (PGCR) algorithm

The GCR algorithm for solving a nonsymmetric linear system Az = b
is described in detail in [2]. In this section. we consider the preconditioned
GCR (PGCR) which can be obtained by applying GCR to the equivalent
linear system AM ~!(M ) = b, where M is a preconditioning matrix that
approximates A and can be easily inverted. The PGCR algorithm with
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preconditioner M is as follows.

ALGORITHM 1 : PGCR
Choose z¢ and then compute ro == b — Az,
for :=0,1.2,...,
if || ri || satisfies a certain criterion, then stop
Solve AMfw; = r,
Compute 4w;

ifi=0
P = w,
Ap; = Aw,
else
hy = —{awdn) g <j7<(i-1)

(Apj vApj) '
e
pi = w; + Z;:o hjip;

, -1
Api = Aw, + Z}:U ljiAp;
endif

__ _AriApi)

= T Ao

Tip1 = &5 + aip;

Tiv1 =1 — a; Ap,
end

Suppose that {p;}, {x;}, {r;}, and {x;} are the sequences generated
by the PGCR. Then, it is easy to show that they satisfy the following
relations which are similar to those for GCR described in [2]:

(l.a) (Api. Apj) = 0 if 1 # J. (Lb) (risAp;) =0if ¢ > j
(l.c) (Api, Api) < (Awy, dw;). (1.ds (ry, Api) = (v, Awy)
(Le) {po,....,pi) = (wy,.... wi) = Nip (M~ 14, wy)

(1.f) 241 minimizes the residual norm [ b—4x || over the affine space

zo+ (Pu, ..., pi).

From (1.c), it can be seen that p; # 0 implies w, # 0. Since M is
assumed to be nonsingular, w; # 0 is equivalent to r; # 0. Hence, p, # 0
implies r; # 0. Theorems 2.1 and 2.2 that show a necessary and sufficient
condition for PGCR not to break down are first introduced below, see
[13] for their proofs.

THEOREM 2.1. Suppose that p; # 0 for all j = 0,1,... .i. Ifa; = 0,
then p;y1 = 0, i.e., PGCR breaks down at the i + 1)-th iteration.
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THEOREM 2.2. Suppose that p; # 0 for all 7 =0,1,... ,i. If a; # 0,
then p; 41 # 0 unless r;1; = 0, i.e., PGCR does not break down at the
(i + 1)-th iteration unless the exact solution is obtained at the (¢ 4 1)-th
iteration.

The hypothesis p; # 0 for all j = 0,1,... ,7 in Theorems 2.1 and
2.2 just means that PGCR does not break down until the :-th itera-
tion. Now, we will consider some conditions for preconditioner M under
which PGCR does not break down until convergence. From now on, it
is assumed that E = A — M for simplicity of exposition.

THEOREM 2.3. Ifr; # 0 and M is chosen such that || r; — Aw; || = ||
EM™'r;j || < || rj || forall j =0,1,... .4, then aj # 0 and p; # 0 for all
j =0,1,...,4, and moreover p;41 # 0 unless ri;y = 0.

PROOF. For: =0, it is clear that ry # 0 implies pg = wg # 0. Since ||
ro—Awo || < [ ro ||, || Awo II? < 2(ro, Awg). Since Awy # 0, (rg, Awg) =
(ro, Apo) > 0 and thus «y # 0. Moreover, if r; # 0, by Theorem 2.2
p1 # 0. Suppose that this theorem holds for ¢ = k(> 0). Then, consider
for ¢ = k£ + 1. Since 7441 # 0, by induction hypothesis a; # 0 for all
i =01,... .,k and p; # 0for all j = 0.1.... .k + 1. Since || 7441 —
Awiyr || < I e I I Awksr P € 2(0k41, Awgg o). It follows that
(Tkt1, Awg41) = (Tht1, Apr+1) > 0. Hence, arqy # 0 and if rp40 # 0,
by Theorem 2.2 py4o # 0.

COROLLARY 2.4. Suppose that p; #0 for all j =0,1,... 0. If M is
chosen such that || r; — Aw; || = || EM™r; || < || ri ||, then a; # 0 and
hence p;+1 # 0 unless r;4; = 0, i.e., PGCR does not break down at the
(i + 1)-th iteration unless the exact solution is achieved at the (¢ + 1)-th
iteration.

COROLLARY 2.5. Suppose that ry # 0. If M 1s chosen such that
| EM~! || <1, then PGCR does not break down until the exact solution
is achieved.

PROOF. Note that || EAM ™! || < 1 implies || EM ™'y || < || v ||
for an arbitrary vector y. It follows that || »; — Aw; || < || r || for
any nonzero residual vector r; generated by PGCR. Since po # 0 and
|| 7o — Awg || < || 7o ||, by Corollary 2.4 ag # 0 and p1 # 0 unless
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r1 = 0. Since pj # 0for j = 0,1 and || r; — Aw, || < || r1 ||, by Corollary
2.4 p2 # 0 unless r, = 0. Continuing in this manner, it can be seen that
PGCR does not break down until the zero residual norm is obtained.

EXAMPLE 2.6. Consider Az = b, where

, {0 1 (2
A—(_l 0) and b~<1).

0.5 0.5 ,
Choose M = (_0.5 0.5) . Then

_ {05 0.5 -1 _ 0 1
E-(—O.E) _0.5> and FM —<_~1 0)'

Since || EM™' || = 1, Corollary 2.5 guarantees that PGCR does not
break down until convergence. Let’s try the PGCR for this example. For
given zo = (0,0)7, we have 1, = (2. 07, po == M~1py = (1,3)7, and
g = % Using these results, ry = -%(1.3)7‘, p1 = :.,'-(—3,1)7‘, and ay =
1. Hence, 22 = (—~1,2)7, the exact solution of Az = b, is obtained in the
second iteration. However, GCR breaks down for this example unless the
exact solution is chosen to be 1.

We showed in [13] that +f || EA™! || < 1, then PGCR does not break
down until the exact solution is obtained. Lemina 2.7 and Example 2.8
given below show that || EA ! || < 1 in Corollary 2.5 is weaker condi-
tion than || EA™! || < 2 in [13].

LEMMA 2.7, If || EA™ || < 1. then

' V71 L EA™" |
(2) | EMT | < WH

PROOF. Notice that AA/~! = ] + FM~'. Since || EA™! I <1,

AM™ = (I-EBA™)™ =14+ Y (EA™'Y.
j=1
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Hence EM~! = > (EA™'Y. From this identity, the inequality (2) is
Jj=1

obtained.

From this lemma. it can be easily seen that || EA™! || < 2 implies

| EM~1 || < 1. The following example shows that || EM ™! || < 1 does
not imply || EA™' || < 1.
— -2
EXAMPLE 2.8. Let A = (2 _}_) and M = (? 0_> . Since E =
3 2
A-M
Y ] 0 )
i _1 /-
1 3

EA™! = (’; 0 ) and EM™!= (
Since || EM ™! || is equal to the maximum singular value of EM ™', ||
EM-1 || = Y4 VE o1 However, || EA™ || > 1. ie, || EA™' || > 1.

i

1
4 2

The following theorem shows that the better M approximates A, the
faster the residual norm converges to 0.

THEOREM 2.9. If PGCR algorithm does not break down until the
i-th iteration, then || rity || < | ri — Aw; | = || EM i |l

PROOF. Let P be an orthogonal projection of R" onto {Apo,...,
Api—1). From relations (1.a) and (1.h), it can be seen that Ap; = (I —
P)Aw; and Pr; = 0. Using these properties, one obtains

| ratr ll= [} i — aidpy || < | i — Ap: I
= || (I = P)(r; — Aw,) <l ri— Awill.

This completes the proof.

There are some well-known techniques for finding a preconditioner
M, see [1, 5, 7, 8] for details. However, none of these techniques provide
any information about the norm of EA ~!. Notice that the problem of
finding a preconditioner M such that || EM ™y || </ || » || for a given
nonzero vector r is much easier than that of finding & preconditioner M
such that || EM™! || < Lor || EM~'r || < || r || for all r belonging
to a finite set of nonzero vectors. To this end, we consider in the next
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section a variant of PGCR algorithm whose preconditioner varies every
iteration depending upon r;, where r; is a residual vector at the z-th
iteration step.

3. GCR algorithm with a variable preconditioner

In Section 2, it was shown that the PGCR using a fixed preconditioner
M during all iteration processes does not break down until convergence
if | EM~' || < 1. Unfortunately, there are no known methods for finding
a preconditioner M such that || EM ™! || < 1. So, we need to consider a
variant of PGCR whose preconditioner guaranteeing no break-down un-
til convergence can be easily obtained. For this purpose, GCR algorithm
with a variable preconditioner, called VPGCR algorithm, is considered
in this section. The main motivation of VPGCR algorithm results from a
flexible inner-outer preconditioned GMRES algorithm which is proposed
recently by Saad [9] and uses a variable preconditioner. VPGCR algo-
rithm which is exactly the same as PGCR algorithm except for using a
variable preconditioner Af; at the i-th iteration step 1s given below.

ALGORITHM 2 : VPGCR
Choose z¢ and then compute ry = » — Axy
for:=0,1,2,...,
if || 7 || satisfies a certain criterion, then stop
Solve ]\/I,-wi =1,
Compute 4w;

if:i=0
Pi = w;
Api = Aw;
else
o (Awi, Ap;) . -
/l]t - (Ap; . Ap;)° 0 _<_ J S (1' - 1)

i—1
P = Wi+ 352 hyip;
A])-i = Aw,; + Z;;L /2]‘,'.4])]'
endif

= {(ri, Ap;)

T O(Api,Aps)
Tigr = x; + aip;
Tig1 =1 — O,‘A]),‘
end
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It is assumed that the preconditioner M; in VPGCR varies depending
upon ;. More precisely, it is assumed that if r;4; = ry, then M4, =
M;. For the sequences {p;}, {w,}, {r:}, and {2;} generated by VPGCR, it
is easy to see that properties (1.a) to (1.d) and property (1.f) in Section
2 are also satisfied. Since the precouditioner for VPGCR varies every
iteration, property (1.e) in Section 2 should be modified to (po,... ,pi) =
{(wo, ... ,w;). Theorem 3.1 in the below shows a sufficient condition for

VPGCR to break down.

THEOREM 3.1. Suppose that p; # 0 for all j =0,1,... 2. If a; =0,
then pi+, = 0, i.e., VPGCR breaks down at the (¢ + 1)-th iteration.

PROOF. Since a; = 0and p; # 0, 7,41 = r; # 0andso My, = M;. It
follows that Aw;y; = Aw,. Let P be an orthogonal projection of R™ onto
(Apo,... , Ap;). Since Aw; € (Apy,... . Api), Apiv1 = (I — P)Awiy1 =
(I — P)Aw; = 0. Hence, p;4+1 = 0.

The following example shows that Theorem 2.2 n Section 2 is no
longer true for VPGCR algorithm.

ExaAMPLE 3.2. Consider 4x = b, where

A= 01 and b= ! )
20 1

Let’s try VPGCR for this example. For given 2 = (0,0)7, we have

ro = (1,17 If we choose My = I. then py = (1, DT, ag = % and
02

1 0) . Then, w; = M; l'rl =

%(1, 1)T and p; = (0,0)?. This example shows that VPGCR produces

p1 = (0,0)7 even if ay # 0 and r; # (0.0)7,

r o= é(Q,—l)T. Now choose M, = (

We now consider a condition for precouditioner M; under which VPG
CR does not break down until convergence. Note that if (rg, Apx) > 0,
then pr # 0 and oy # 0. Using this fact, the following theorem whose
proof is analogous to that of Theorem 2.3 can be obtained.

THEOREM 3.3. If r; # 0 and M,’s are chosen such that || rj —
Aw; || = || r; — A]\!;lrj | < || 7|l forall j =0,1, ..,¢, thenp; #0
and a; # 0 forallj =0,1,... 4
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From Theorems 3.1 and 3.3, the following corollary is immediately
obtained.

COROLLARY 3.4. Suppose that p; # 0 for all j = 0,1,... (1 — 1)
and a1 # 0. If r; # 0 and M; is chosen such that || r; — Aw; || = ||
ri— AM'ri || < || 74 ||, then p; # 0 and a; # 0, i.e.,, VPGCR does not

break down at the i-th iteration.

Since Theorem 2.2 does not hold for VPGCR, one more assumption
ai-1 # 0 has been added to Corollary 3.4 as compared with Corollary
2.4. Both Theorem 3.3 and Corollary 3.4 assurae that M; is chosen such
that || r; — AM'r; || < || »; ||. It is easy to see that Theorem 3.3 and
Corollary 3.4 still hold under the following assumption which replaces
the above assumption:

A nomzero vector w; is chosen such that || r; — Aw; || < || 7 ||.
This means that we do not have to find M; explicitly such that || r; —
AM'ri || < || 74 || when implementing VPGCR algorithin to solve a
practical problem. Instead, it is sufficient to choose a nonzero vector w;
directly such that || r; — dw; || < || 7i ||. Choosng such a nonzero vector
w; 1s equivalent to finding a nonzero approximate solution w; to 4w = r;
such that || r; — Aw; || < || r; ||. Any iterative method can be used to find
such an approximate solution w,. This approach reduces the complexity
of VPGCR algorithm since w; = A ™'r; can be obtained directly without
finding variable preconditioner M, caxplicitly. When using an iterative
method to find w;, the zero vector is used as aa initial guess. The main
reason for using the zero initial vector is that zero vector already satisfies
the condition || r; — Aw; || < || 7; || and heace a nonzero vector w;
satisfying this condition can be obtained in small number of iteration
steps. An important result of VPGCR is described in the following
theorem when GMRES method is used to find a nonzero vector Wy

THEOREM 3.5. Let r; and p; be nouzero vectors generated by VPGCR
algorithm. Suppose that GMRES method with zero initial vector is used
to find a nonzero approximate solution w; to Aw = r;. If || v, — Aw; || =

€|l ri ll. then || P(Awi) || < € || Aw; || and 1< 439 < /3 when e <

3@, where P is an orthogonal projection of R" onto {Apy, ... , Apici)
and 0 < e < 1.




990 Jae Heon Yun

PROOF. By the minimal residual property of GMRES, it is easy to
see that

(3) (ri, Aw;) = (Aw;, Aw;).
From relation r;4; = r; — «; Ap; and equation (3),

| Aw; |]2

T e A

(4) Irisn I =0 v * =

gl
¢ and hence

From equation (3), || ri — Aw; ||> = || » [|* —

(5) H Aw; “ =1~ ¢ II T ”
Since || ri+1 || 2 0, from equations (4) and (3)

2

T

[ -
Since || Ap; || < || Aw; ||, from (5) and (G)

(7) A=) rifl ShApll s V1=-e ||

From (5) and (7), one obtains

(6)

| P(Aw) 1*= || Awi |* = || Ap:i |
<= r f (1= | ri |
=€ || Aw; |?

It follows that || P(Aw,) || < €| Aw; ||. From this inequality and (7),
it is easy to see that || P(Aw;) || < || 4pi || if € < 3@ Therefore,
1< llil::lkll < /2 whene < 122

Theorem 3.5 implies that if € is close to 0, then || P(Aw;) || is close to
0 and hence || Ap; || is close to || Aw; ||. Therefore, if ¢ is close to 0, then
from equation (4) || rig1 || = || i — adp, || is close ta || ry — Aw; |, 1e.,
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the norm of r;4+; obtained using p; = w; + Zj;b hjip; is close to that of
ri+1 obtained using p; = w;. This means that all computational steps of
VPGCR for finding p; and r;4; from a nonzero vector w;, computed by
GMRES, are of little use if € is close to 0. Notice that VPGCR can be
thought of as a combination of GMRES and GCR when GMRES method
is used to compute w; = M 'r;. From equation (4), it can be also seen

'||Ii‘\;f:|il‘ is, the smaller || r;4, || is. [t follows that GCR part

of VPGCR becomes useful computational steps when ||||’_:;t"_"||]'
large. Theorem 3.5 gives an idea of how an optimal number of € may be
chosen to make use of advantages of both GMRES (used for computing
w;) and GCR (used for computing p; and r;;,) methods. Numerical
experiments in next section show that a good choice of € may range

from 0.8 to 0.9 (see Tables 1 and 2). Notice that the good choice of € 1s

that the larger

can be made

2
greater than —‘2£

4. Numerical results

In this section, we present numerical results for both VPGCR and
GMRES(k) algorithms on the CRAY-C90 supercomputer at the Sys-
tems Engineering Research Institute (SERI) in KIST. All tests have
been carried out using 64-bit arithmetics (i.c.. single precision on the
CRAY).

The test problem considered in this paper is to solve a block tridiag-
onal linear system Ax = b whose coefficient matrix A is obtained from
a discretization of the following type of PDE problem

—(Upy + Uyy )+ (U +1ty) = fon
ulog =0
where Q = [0, 1] x [0, 1] and 7 is a constant. In the discretization, we use
the standard five point central finite difference approximation and the

same step size h in both @ and y directions. Then the matrix A is of the
form

A= and D = N
¢ D B Jé) 4
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wherea = =146, 3 =-1-06,B=(-1+6)I,C={-1-46)I,and § =
32&. If the step size h = ﬁ, then the order n of matrix 4 isn = N2, The
right-hand side vector b is chosen so that b = A[1,1,...,1]T. The initial
vector zg is set to [2,2,..., Q]T for both algorithms to make a fair com-
parison. The termination criterion (i.e., convergence criterion) used for
both algorithms is I-lﬁ;—!:-[ < 1078, :

Test runs were made for v = 1 and v = 50. When sesting VPGCR al-
gorithm, a nonzero vector w; s Aw—r; || < €|l ri ]|
is computed using GMRES(10) with zero initial vector, where 0 < € <
1. For the case where such a nonzero w; is found within the first one
period of GMRES(10), all 10 steps of that period of GMRES(10) are
executed. According to numerical experiments, this raethodology signif-
icantly reduces the number of vectors of order n to be stored. To find
an optimal range of € which provides good performeance, numerical ex-
periments for VPGCR are carried out for 5 different numbers of € -
e = 0.5, 0.6, 0.7, 0.8, and 0.9.

TABLE 1: Numerical results for 4y = 1

vn Method lter Spmyv Mem
50 GMRES(30) 316 316 30
VPGCR(e = 0 9) 16 169 42
VPGCR(¢ = 0.3) 16 169 42
VPGCR(e = U T) 16 179 42
VPGCR(e = 0.6) 16 194 42
VPGCR(e = 0 ) 15 191 10
50 GMRES(30) 587 587 30
VPGCR(e = 0.9) 21 231 52
VPGCR(e = 0.3) 22 238 54
VPGCR{e = 0.7) 20 253 50
VPGCR{e = 0.6) 19 272 48
VPGCR(e = 0.5) 15 302 10
50 GMRES(30) 1050 1050 30
VPGCR(e = 0.9) 30 324 70
VPGCR(¢ = 0.8) 27 344 64
VPGCR(e = 0.7) 25 385 60
VPGCR(e = 0.6) 21 438 52
VPGCR(c = 0.5) 16 485 42

Numerical results for ¥ = 1 and 5 = 50 are listed in Tables 1 and

2, respectively. [ter refers to the nmumnber of iterations required to get
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an approximate solution which satisfies the convergence criterion men-
tioned above, Spmv denotes the number of sparse matrix times vector
operations, and Mem denotes the number of vectors of order n to be
stored. Notice that Mem does not count the munber of temporary vectors
of small size which is much less than 7. Storages for A4, x, and b are not
considered for comparison since these are used in both GMRES(k) and
VPGCR algorithms. VPGCR generally requires more vector updates
and inner products than GMRES(k). Since vector update and inner
product operations usually take much less exccution time than sparse
matrix times vector operations, we only consider Spmv to evaluate the
performance of each algorithm. For all test problems, VPGCR performs
best when € = 0.9 and VPGCR has less sparse matrix times vector oper-
ations than GMRES(30) (sce Tables 1 and 2). As € gets smaller, VPGCR
requires less storages, but its performance gets worse. As compared with
GMRES(30), the relative performance of VPGCR for v = 1 is much
better than that of VPGCR for v = 50.

TABLE 2: Numerical results for v = 50

vn Method Iter Spmv Mem
50 ° GMRES({30) 299 209 30
VPGCR(e = 0.9) 18 191 46
VPGCR{e = 0.8) 17 213 444
VPGCR(e = 0.7) 16 220 42
VPGCR(e = 0.6) 16 245 42
VPGCR(e = 0.5) 15 245 40
50 GMRES(30) 431 41 30
VPGCR(e = 0.9) 21 246 52
VPGCR(e = 0.3) 21 279 52
VPGCR(e = 0.7} 21 300 52
VPGCR(e = 0.6) 13 320 46
VPGCR(e = 0.5) 16 338 42
50 GMRES(30) 506 506 30
VPGCR(e = 0.9) 25 319 60
VPGCR(e = 0.3) 25 372 60
VPGCR(e = 0.7) 23 410 56
VPGCR(e = 0.6) 2] 451 52
VPGCR(e = 0.5) 15 484 40
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5. Concluding Remarks

Most of the existing preconditioned iterative methods use a fixed pre-
conditioner which can be usually found using various incomplete factor-
ization techniques, see [1] for details. Unfortunately, there is no known
method which finds a preconditioner guaranteeing no breakdown. Also,
computational steps for finding a preconditioner require expensive costs
and contain very small portion which can be executed in parallel.

Since GMRES is used to find a nonzero vector w; such that || Aw; —
ri || < | ri I, VPGCR does not break down until convergence and its
preconditioning step contains a lot of portion which can be executed in
parallel. VPGCR also has an advantage of being able to find w; = My
directly without finding variable preconditioner M; cxplicitly. However,
VPGCR may have a stagnation problem since GMRES used to find a
nonzero w; may stagnate. When testing VPGCR, a criterion || Aw; —
ri || < e || i || 1s used for the purpose of finding sn optimal number
of € for which VPGCR performs well without breakdown. According to
Theorem 3.5 and numnerical experiments carried out i1 this paper, it can
be expected that an optimal nunber of € for VPGCR may range from
0.8 to 0.9 even for other types of problens. Lastly, sitce VPGCR can be
viewed as a combined iterative method which utilizes advantages that
both GCR and GMRES have, we reconunend the use of VPGCR with a
suitably chosen € for the problems that GMRES does not perform very
well.
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