• Title/Summary/Keyword: Kriging approach

Search Result 83, Processing Time 0.037 seconds

An artificial neural network residual kriging based surrogate model for curvilinearly stiffened panel optimization

  • Sunny, Mohammed R.;Mulani, Sameer B.;Sanyal, Subrata;Kapania, Rakesh K.
    • Advances in Computational Design
    • /
    • v.1 no.3
    • /
    • pp.235-251
    • /
    • 2016
  • We have performed a design optimization of a stiffened panel with curvilinear stiffeners using an artificial neural network (ANN) residual kriging based surrogate modeling approach. The ANN residual kriging based surrogate modeling involves two steps. In the first step, we approximate the objective function using ANN. In the next step we use kriging to model the residue. We optimize the panel in an iterative way. Each iteration involves two steps-shape optimization and size optimization. For both shape and size optimization, we use ANN residual kriging based surrogate model. At each optimization step, we do an initial sampling and fit an ANN residual kriging model for the objective function. Then we keep updating this surrogate model using an adaptive sampling algorithm until the minimum value of the objective function converges. The comparison of the design obtained using our optimization scheme with that obtained using a traditional genetic algorithm (GA) based optimization scheme shows satisfactory agreement. However, with this surrogate model based approach we reach optimum design with less computation effort as compared to the GA based approach which does not use any surrogate model.

Generalized Kriging Model for Interpolation and Regression (보간과 회귀를 위한 일반크리깅 모델)

  • Jung Jae Jun;Lee Tae Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.277-283
    • /
    • 2005
  • Kriging model is widely used as design analysis and computer experiment (DACE) model in the field of engineering design to accomplish computationally feasible design optimization. In general, kriging model has been applied to many engineering applications as an interpolation model because it is usually constructed from deterministic simulation responses. However, when the responses include not only global nonlinearity but also numerical error, it is not suitable to use Kriging model that can distort global behavior. In this research, generalized kriging model that can represent both interpolation and regression is proposed. The performances of generalized kriging model are compared with those of interpolating kriging model for numerical function with error of normal distribution type and trigonometric function type. As an application of the proposed approach, the response of a simple dynamic model with numerical integration error is predicted based on sampling data. It is verified that the generalized kriging model can predict a noisy response without distortion of its global behavior. In addition, the influences of maximum likelihood estimation to prediction performance are discussed for the dynamic model.

Comparison of Univariate Kriging Algorithms for GIS-based Thematic Mapping with Ground Survey Data (현장 조사 자료를 이용한 GIS 기반 주제도 작성을 위한 단변량 크리깅 기법의 비교)

  • Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.4
    • /
    • pp.321-338
    • /
    • 2009
  • The objective of this paper is to compare spatial prediction capabilities of univariate kriging algorithms for generating GIS-based thematic maps from ground survey data with asymmetric distributions. Four univariate kriging algorithms including traditional ordinary kriging, three non-linear transform-based kriging algorithms such as log-normal kriging, multi-Gaussian kriging and indicator kriging are applied for spatial interpolation of geochemical As and Pb elements. Cross validation based on a leave-one-out approach is applied and then prediction errors are computed. The impact of the sampling density of the ground survey data on the prediction errors are also investigated. Through the case study, indicator kriging showed the smallest prediction errors and superior prediction capabilities of very low and very high values. Other non-linear transform based kriging algorithms yielded better prediction capabilities than traditional ordinary kriging. Log-normal kriging which has been widely applied, however, produced biased estimation results (overall, overestimation). It is expected that such quantitative comparison results would be effectively used for the selection of an optimal kriging algorithm for spatial interpolation of ground survey data with asymmetric distributions.

Sensitivity Approach of Sequential Sampling for Kriging Model (민감도법을 이용한 크리깅모델의 순차적 실험계획)

  • Lee, Tae-Hee;Jung, Jae-Jun;Hwang, In-Kyo;Lee, Chang-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1760-1767
    • /
    • 2004
  • Sequential sampling approaches of a metamodel that sampling points are updated sequentially become a significant consideration in metamodeling technique. Sequential sampling design is more effective than classical space filling design of all-at-once sampling because sequential sampling design is to add new sampling points by means of distance between sampling points or precdiction error obtained from metamodel. However, though the extremum points can strongly reflect the behaviors of responses, the existing sequential sampling designs are inefficient to approximate extremum points of original model. In this research, new sequential sampling approach using the sensitivity of Kriging model is proposed, so that new approach reflects the behaviors of response sequentially. Various sequential sampling designs are reviewed and the performances of the proposed approach are compared with those of existing sequential sampling approaches by using mean squared error. The accuracy of the proposed approach is investigated against optimization results of test problems so that superiority of the sensitivity approach is verified.

Feasibility study of improved particle swarm optimization in kriging metamodel based structural model updating

  • Qin, Shiqiang;Hu, Jia;Zhou, Yun-Lai;Zhang, Yazhou;Kang, Juntao
    • Structural Engineering and Mechanics
    • /
    • v.70 no.5
    • /
    • pp.513-524
    • /
    • 2019
  • This study proposed an improved particle swarm optimization (IPSO) method ensemble with kriging model for model updating. By introducing genetic algorithm (GA) and grouping strategy together with elite selection into standard particle optimization (PSO), the IPSO is obtained. Kriging metamodel serves for predicting the structural responses to avoid complex computation via finite element model. The combination of IPSO and kriging model shall provide more accurate searching results and obtain global optimal solution for model updating compared with the PSO, Simulate Annealing PSO (SimuAPSO), BreedPSO and PSOGA. A plane truss structure and ASCE Benchmark frame structure are adopted to verify the proposed approach. The results indicated that the hybrid of kriging model and IPSO could serve for model updating effectively and efficiently. The updating results further illustrated that IPSO can provide superior convergent solutions compared with PSO, SimuAPSO, BreedPSO and PSOGA.

Reliability-Based Design Optimization Using Kriging Metamodel with Sequential Sampling Technique (순차적 샘플링과 크리깅 메타모델을 이용한 신뢰도 기반 최적설계)

  • Choi, Kyu-Seon;Lee, Gab-Seong;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1464-1470
    • /
    • 2009
  • RBDO approach based on a sampling method with the Kriging metamodel and Constraint Boundary Sampling (CBS), which is sequential sampling method to generate metamodels is proposed. The major advantage of the proposed RBDO approach is that it does not require Most Probable failure Point (MPP) which is essential for First-Order Reliability Method (FORM)-based RBDO approach. The Monte Carlo Sampling (MCS), most well-known method of the sampling methods for the reliability analysis is used to assess the reliability of constraints. In addition, a Cumulative Distribution Function (CDF) of the constraints is approximated using Moving Least Square (MLS) method from empirical distribution function. It is possible to acquire a probability of failure and its analytic sensitivities by using an approximate function of the CDF for the constraints. Moreover, a concept of inactive design is adapted to improve a numerical efficiency of the proposed approach. Computational accuracy and efficiency of the proposed RBDO approach are demonstrated by numerical and engineering problems.

Development of Prediction Model for Renewable Energy Environmental Variables Based on Kriging Techniques (크리깅 기법 기반 재생에너지 환경변수 예측 모형 개발)

  • Choy, Youngdo;Baek, Jahyun;Jeon, Dong-Hoon;Park, Sang-Ho;Choi, Soonho;Kim, Yeojin;Hur, Jin
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.223-228
    • /
    • 2019
  • In order to integrate large amounts of variable generation resources such as wind and solar reliably into power grids, accurate renewable energy forecasting is necessary. Since renewable energy generation output is heavily influenced by environmental variables, accurate forecasting of power generation requires meteorological data at the point where the plant is located. Therefore, a spatial approach is required to predict the meteorological variables at the interesting points. In this paper, we propose the meteorological variable prediction model for enhancing renewable generation output forecasting model. The proposed model is implemented by three geostatistical techniques: Ordinary kriging, Universal kriging and Co-kriging.

Comparative Evaluation among Different Kriging Techniques applied to GOSAT CO2 Map for North East Asia (GOSAT 기반의 동북아시아 CO2 분포도에 적용된 크리깅 기법의 비교평가)

  • Choi, Jin Ho;Um, Jung-Sup
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.6
    • /
    • pp.879-890
    • /
    • 2011
  • The GOSAT (Greenhouse gases Observing SATellite) data provide new opportunities the most regionally complete and up-to-date assessment of $CO_2$. However, in practice, GOSAT records often suffer from missing data values mainly due to unfavorable meteorological condition in specific time periods of data acquisition. The aim of this research was to identify optimal spatial interpolation techniques to ensure the continuity of $CO_2$ from samples taken in the North East Asia. The accuracy among ordinary kriging (OK), universal kriging (UK) and simple kriging (SK) was compared based on the combined consideration of $R^2$ values, Root Mean Square Error (RMSE), Mean Error (ME) for variogram models. Cross validation for 1312 random sampling points indicate that the (UK) kriging is the best geostatistical method for spatial predictions of $CO_2$ in the East Asia region. The results from this study can be useful for selecting optimal kriging algorithm to produce $CO_2$ map of various landscapes. Also, data users may benefit from a statistical approach that would allow them to better understand the uncertainty and limitations of the GOSAT sample data.

A Random Sampling Method in Estimating the Mean Areal Precipitation Using Kriging

  • Lee, Sang-Il
    • Korean Journal of Hydrosciences
    • /
    • v.5
    • /
    • pp.45-55
    • /
    • 1994
  • A new method to estimate the mean areal precipitation using kriging is developed. Urlike the conventional approach, points for double and quadruple numerical integrations in the kriging equation are selected randomly, given the boundary of area of interest. This feature eliminates the conventional approach's necessity of dividing the area into subareas and calculating the center of each subarea, which in turn makes the developed method more powerful in the case of complex boundaries. The algorithm to select random points within an arbitrary boundary, based on the theory of complex variables, is described. The results of Monte Carlo simulation showed that the error associated with estimation using randomly selected points is inversely proportional to the square root of the number of sampling points.

  • PDF

Probabilistic analysis for face stability of tunnels in Hoek-Brown media

  • Li, T.Z.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.595-603
    • /
    • 2019
  • A modified model combining Kriging and Monte Carlo method (MC) is proposed for probabilistic estimation of tunnel face stability in this paper. In the model, a novel uniform design is adopted to train the Kriging, instead of the existing active learning function. It has advantage of avoiding addition of new training points iteratively, and greatly saves the computational time in model training. The kinematic approach of limit analysis is employed to define the deterministic computational model of face failure, in which the Hoek-Brown failure criterion is introduced to account for the nonlinear behaviors of rock mass. The trained Kriging is used as a surrogate model to perform MC with dramatic reduction of calls to actual limit state function. The parameters in Hoek-Brown failure criterion are considered as random variables in the analysis. The failure probability is estimated by direct MC to test the accuracy and efficiency of the proposed probabilistic model. The influences of uncertainty level, correlation relationship and distribution type of random variables are further discussed using the proposed approach. In summary, the probabilistic model is an accurate and economical alternative to perform probabilistic stability analysis of tunnel face excavated in spatially random Hoek- Brown media.