• Title/Summary/Keyword: Kraft paper

Search Result 193, Processing Time 0.022 seconds

The Evaluation of Thermal Aging Characteristics in Insulating Materials of the Pole Transformers (가속열화 방법에 의한 주상변압기 절연물의 열 열화 특성 평가)

  • 이병성;송일근;이재봉;한상옥
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12
    • /
    • pp.1136-1141
    • /
    • 2003
  • The primary insulation materials used in an oil filled transformer are kraft paper, wood, porcelain and oil. Modern transformers use chemically treated paper to improve its tensile strength and resistance to aging caused by immersion in oil. But these insulation papers are mainly aged by thermal stress. Over the life time of the insulation paper and oil, it is exposed to high temperatures, oxygen and water. Its interaction with the steel of the tank and core plus the copper and aluminium of the windings will eventually cause the chemical properties of the oil to decay. High temperature have an effect on mechanical strength of cellulous paper used in the layer insulation. We made two aging cells in which insulation papers and mineral oil are conducted to test thermal properties. It is measured dielectric strength, number of acid, moisture, etc. of insulation paper and oil aged in the aging cells.

Physical and Electrical Characteristics of Varnish and Varnish Treated Insulating Paper for Pole Transformers

  • Jung, Jong-Wook;Song, Il-Keun;Koo, Kyo-Sun;Song, Hyun-Seok;Kwak, Hee-Ro;Han, Yong-Huei
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.6
    • /
    • pp.321-326
    • /
    • 2002
  • This paper describes the mechanical and electrical characteristics of insulating paper impregnated with diluted varnish(W-128), according to Korean Standards. The varnish was diluted with a solvent of 6 different wt%. Kraft paper and Nomex paper were impregnated with the diluted varnish in a vacuum condition, and then completely dried. As the mechanical characteristics, the thickness of the completely dried varnish, the drying time and the tensile strength of the specimens were measured, and as the electrical characteristics, the permittivity, the tan $\delta$ and the specific resistance were evaluated as well.

Studies on the Preservation of Korean Rice by Gamma-irradiation (III) On disinfection of rice by gamma-ray irradiation (감마선 조사에 의한 쌀 저장에 관한 연구(제 3 보))

  • Kim, Hyong-Soo;Choi, Yong-Rack;Kim, Sung-Kih;Harn, In-Ja
    • Korean Journal of Food Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.113-120
    • /
    • 1970
  • For the purpose of disinfection and efficient storage, Korean Paldal variety rice was hulled into the unpolished and polished ones and packed in the kraft paper bags, irradiated with relatively high doses, 500, 800, and 1,000 krad from the $CO^{60}$ source and stored at room temperature, a variety of changes were observed as follows. 1) With 1,000 krad irradiation, mold was almost sterilized. 2) Fat acidity increased during storage and continued to increase more with increased doses. 3) The content of riboflavin eras severely reduced with higher doses. 4) The results of organoleptic test were featured by a yellow color and a keen irradiation odor appearing in the boiled rice. 5) In the irradiated rice starch with 3,000 krad, hydrolysis with ${\alpha}$-amylase was not effective while accelerated with diastase.

  • PDF

Studies on the Preservation of Korean Rice by Gamma-radiation (IV) -On the free amino acids contents in gamma-irradiated rice- (감마선 조사에 의한 쌀저장에 관한 연구 (제 4 보) - 감마선 조사쌀의 유리 아미노산 함량에 관하여 -)

  • Kim Hyong-Soo;Kim Sung-Kih;Harn In-Ja
    • Korean Journal of Food Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.15-18
    • /
    • 1971
  • The Korean rice of Paldal variety was milled, in March, 1969, into brown rice and 92% polished one and each 1.5kg sample was packed in the kraft paper bags. With Co-60 gamma-irradiation, the samples were treated in the various ranges of 500, 800 and 1,000 Krad, and then they were stored at the room temperature. The changes of the contents of free amino acids in the samples were determined by the amino acid autoanalyzer (Yanagimoto, Japan, LC-type). The results obtained in June and October of the year were as follows. 1) In the disinfecting irradiation of rice by the higher doses of 500, 800 and 1,000 Krad, there wasn't any particular distinction between the control lot and irradiated lot in respect to the free amino acid contents. 2) The contents of free amino acids in rice during storage had the decreasing tendencies, and especially prominent in case of glutamic acid.

  • PDF

Effects of Recycling on the Adsorption of Cationic Polyacrylamide onto Fiber and Fines (리사이클링 횟수에 따른 장섬유와 미세섬유의 폴리아크릴아미드 흡착특성 및 종이의 물성 변화)

  • 주성범;이학래
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.1
    • /
    • pp.31-38
    • /
    • 1999
  • Adsorption of polymeric flocculants and dry strength agents onto the surface of papermaking fibers is critical for their effective utilization since the polymeric substances not adsorbed on fibers or fines keep recirculating in the papermaking system to cause various operational difficulties and loss of raw materials. Problems associated with the unadsorbed polymeric substances generate great attention because unprecedent interests in utilization of recycled papers and papermaking system closure. In this study, to understand the effects of recycling on the adsorption propensity of cationic polyacryamide (PAM) dry strength resin onto hardwood bleached kraft pulp fibers and fines a systematic approach was followed. Never dried bleached hardwood kraft pulp was recycled in two different ways. In mode one recycling experiment never dried pulp was beaten then recycled three times by employing simple drying and disintegrating steps. In mode two recycling experiment beating of the recycled pulp was carried out after each recycling step. Adsorption of cationic PAM on fibers and fines was evaluated employing Kjeldahl nitrogen analysis method. The influence of recycling on water retention value, carboxyl content, sheet density and tensile strength of the pulp was examined. As the number of recycling increased, water retention value of the fiber was reduced due to hornification and this in turn caused a decrease in adsorption of cationic PAM. On the other hand, the carboxyl content of the recycled fibers increased because of the oxidation of fibers occurred during drying, and this caused an increase in adsorption of cationic PAM. Because of these two opposing factors the adsorption of the cationic PAM on the recycled fibers decreased and then increased slightly at third recycling step. Increase of PAM adsorption, however, did not provide did not provide and strength improvement for the recycled pulp fibers indicating greater influence of the honification on interfiber bonding.

  • PDF

Mechanical Property Variations of Handsheets by Mixing Ratios of Sw-BKP, Hw-BKP, and PVA Fibers (Sw-BKP, Hw-BKP, PVA 섬유의 배합비에 따른 수초지의 물성과 파괴인성의 변화)

  • Yoon, Sang-Gu;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.60-65
    • /
    • 2015
  • In order to improve the strength of paper, mixing ratio of Sw-BKP and Hw-BKP and PVA (polyvinyl alcohol) fibers dosage were investigated. When the Sw-BKP fraction was increased, strength properties were increased because of average fibers length increased. When PVA fraction increased, paper strength was increased, but there was dissolution of PVA in water. The reason for improving handsheet strength that contained PVA was due to increased bonding action between the fibers by the PVA. The addition of PVA to kraft pulp would be helpful for packaging paper materials to increase strength and fracture toughness.

Improvement of Physical Properties of Paper by Esterification of Cellulose (셀룰로오스 에스테르화에 의한 종이의 강도변화)

  • 이명구;유재국
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.2
    • /
    • pp.55-61
    • /
    • 1998
  • This treatment was applied to bleached softwood kraft pulp handsheets in an effort to improve physical strength of paper. Paper strength was improved by esterification of cellulose and polycarboxylic acid. Because hydrogen bond of carboxyl group is stronger than that of hydroxyl group, polycarboxylic acid forms stronger hydrogen bond than cellulose does. 1,2,3,4,-cyclopentanetetracarboxylic acid (CPTA) and sodium dihydrogen phosphate ($NaH_2O_4$) were used as polycarboxylic acid and catalyst, respectively This reaction was confirmed by the weight gain of the handsheets, by FTIR spectrum and by changes in mechanical properties of sheets. Wet tensile strength was improved when handsheets were treated with polycarboxylic acid. However, tear strength and burst strength decreased.

  • PDF

Studies on the Treatment of Pulp Bleaching Effluent with KS-62 Fungus (KS-62 균주에 의한 펄프 표백 폐액처리에 관한 연구)

  • 조준형;은주영
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.1
    • /
    • pp.86-93
    • /
    • 2000
  • High Colored kraft bleaching effluent is one of the main constrains in pulp and paper industry due to its dissloved lignin derivatives. The degradation of lignin in pulp and paper mill effluent is mainly caused by white-rot fungi. This paper showed that the treatment with KS-62 fungus significantly reduced the color and chemical oxygen demand in the effluent. The amounts of Mn ions in the wastewater would play roles in the induction and activity of MnP (Managanese peroxidase). Extracellular MnP was isolated from the fungus KS-62. The treatment with the MnP had the most effective decolorizatiion in the wastewater treatment using nutrients mediu.

  • PDF

Effects of Wet Pressing and Drying Conditions on Disintegration and Physical Properties of Paper (습부 압착과 건조 조건이 종이의 해리 특성 및 물성에 미치는 영향)

  • 김은영;원종명
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.2
    • /
    • pp.12-17
    • /
    • 2003
  • The effects of wet pressing and drying conditions on the disintegration and physical properties of paper were investigated in order to get the basic information on the resistance of paper for aqueous solution during converting processes. Wet pressing of unbeaten bleached softwood kraft pulp increased WRV at the range of grammage investigated. The increase of WRV with grammage at low wet pressing pressure(50 psi) was obvious, while it was not significant at higher wet pressing pressure(110 psi). The changes of WRV by drying were affected by the grammage and wet pressing pressure. The poorer disintegration of sheet, the higher wet pressing pressure and drying temperature. Although the strength properties were increased with the grammage, wet pressing pressure and drying temperature, results showed different trend from those of beaten pulp.

Recycling of Waste Paper with Alkaline Cellulolytic Enzyme (II) - Purification of alkaline cellulolytic enzymes and characteristics of reaction with fiber - (호알칼리성 목질분해 효소를 이용한 폐지 재생(제2보) - 알칼리성 목질분해 효소 정제 및 섬유 반응 특성 -)

  • 강석현;이중명;박성배;엄태진
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.1
    • /
    • pp.24-29
    • /
    • 2004
  • Alkaline cellulolytic enzymes from cultured medium of Coprinus cinereus 2249 were purified with gel and ion-exchange chromatography and characteristics of those enzyme proteins were investigated. A fiber length distribution and a crystallinity of cellulose and sugar composition of enzyme treated Mixed Office Wastepaper(MOW) and Unbleached Kraft Pulp(UKP) were analysed. The conclusion could summarized as follows; \circled1 Alkaline and acidic, endo- and exo-glucanases were purified from cultured medium of Coprinus cinereus 2249. \circled2 The approximate molecular weight of alkaline endo-glucanase was 42 kDa, and also that of alkaline exo-glucanase was 50 kDa. A fiber length distribution and a crystallization of cellulose and sugar composition of enzyme treated MOW and UKP were not so much changed with original paper and pulp.