• Title/Summary/Keyword: Kozeny constant

Search Result 7, Processing Time 0.02 seconds

Pressure Filtration of Zr(Y,Ce)$O_2$ TZP/Mullite Suspensions for the Preparations of Functionally Gradient Materials with Multi-layer (다층 경사기능재료의 제조를 위한 Zr(Y,Ce)$O_2$ TZP/Mullite 현탁액의 가압여과)

  • 이상진;박상희;박홍채;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.693-699
    • /
    • 2000
  • Casting behavior of Zr(Y,Ce)O2 TZP/Mullite suspension during pressure filtration was investigated to prepare multi-layered Functionally Gradient Materials(FGM). The dispersion stabilities of each layer suspension were investigated by examination of zeta potential and viscosity. The each suspensions with 20 vol.% solid loading and 100 첸 of viscosity was prepared after fix of the dispersing agent (Sodium hexa-meta phosphate) and the binder (Hydroxyethyl cellulose), and then the cakes were formed at the 2.5 MPa~10.0MPa pressure range. The cake thickness of all suspensions was increased with the square root of time at the constant pressure, and the relations between filtration pressure(P)a nd dehydration rate (Q=dh/dt) showed that the flows of filtrates in the consolidated layers were laminar. The permeabilities were nearly constant during filtration, and kozeny constants(Kc) of the suspensions were 4.8~6.7. These valumes were seen as close to 5, which might be homogeneous particle packing during filtration. On the basis of those data, the multi layered compaction with 9 mm thickness and 52.5% green density was prepared by continuous pressure filtration.

  • PDF

Relationship between Hydraulic Conductivity and Electrical Conductivity in Sands (사질토의 투수계수와 전기전도도 간의 상관관계)

  • Kim, Jinwook;Choo, Hyunwook;Lee, Changho;Lee, Woojin
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.6
    • /
    • pp.45-58
    • /
    • 2015
  • The aim of this study is to suggest a semi-empirical equation for estimating the hydraulic conductivity of sands using geoelectrical measurements technique. The suggested formula is based on the original Kozeny-Carman equation; therefore varying factors affecting the Kozeny-Carman equation were selected as the testing variables, and six different sands with varying particle sizes and particle shapes were used as the testing materials in this study. To measure both hydraulic and electrical conductivities, a series of constant head permeameter tests equipped with the four electrodes conductivity probe was conducted. Test results reveal that the effects of both pore water conductivity and flow rate in relation between hydraulic conductivity and formation factor (=pore water conductivity / measused conductivity of soil) of tested materials are negligible. However, because the variations of hydraulic conductivity of the tested sands according to particle sizes are significant, the estimated hydraulic conductivity using the formation factor varies with particle sizes. The overall comparison between the measured hydraulic conductivity and the estimated hydraulic conductivity using the suggested formula shows a good agreement, and the variation of hydraulic conductivity with varying Archie's m exponents is smaller compared with varying porosities.

A Study on the Relationship between Void Ratio and Permeability by Constant Strain Rate Consolidation Test (일정변형률 압밀시험을 이용한 간극비-투수계수의 관계 연구)

  • Joo, Jong-Jin;Lim, Hyung-Duk;Lee, Woo-Jin;Kim, Dae-Kyu;Kim, Nak-Kyung;Kim, Hyung-Joo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.3
    • /
    • pp.15-25
    • /
    • 2002
  • The permeability coefficient is one of the fundamental engineering properties of soft clays. Consolidation process as well as migration of pollutants in soil are affected the permeability coefficient, which generally decreases with the reduction in void ratio during consolidation. After Kozeny(1927) and Carman(1956), many researchers have proposed the relationships between void ratio and permeability in such forms as; (1) log e - log k(1+e), (2) e - log k, or (3) log e - log k. Constant rate of strain (CRS) tests was performed with undisturbed samples obtained at Kunsan and Kimhae deposits, which are representative Korean marine clay. From the results of the tests, the relationships were found valid for Kunsan and Kimhae clays. The experimental correlation $C_k=0.5e_o$ was satisfied with Kimhae clay but not with Kunsan clay.

  • PDF

Consolidation Characteristics of Clays Considering the Aging Effect (Aging Effect를 고려한 점성토의 압밀특성)

  • 김영수;이상웅;김대만;현영환
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.6
    • /
    • pp.109-118
    • /
    • 2004
  • The consolidation of clay occurs with time lag, and this kind of lag can be separated into plastic lag and hydraulic lag. In this study, CRS tests were performed to research the effect of original secondary consolidation of the clay with respect to the characteristics of consolidation. Test results showed that plastic time lag was one of the key factors to get the preconsolidation pressure, and suggested the formula of the Quasi-preconsolidation pressure obtained from the relationship between consolidation time lag and consolidation pressures. In addition though the characteristics of coefficient of consolidation show a wide range of values, after passing the double preconsolidation point, it showed the tendency to converge into the constant value. The coefficient of permeability in normally consolidated state is related to its void ratio, and the permeability variables, n and $C_1$ were determined by the test results using the equation suggested by Samarasinghe. et. al. And then the equation was compared with the Kozeny-Carman's equation. Because of delayed compression caused by consolidation time lag, aging effect could be also found in the relationship between coefficient of permeability and void ratio.

Evaluation of Permeability Characteristics of Yangsan Clay by Laboratory Tests (실내시험을 통한 양산점토의 투수특성 평가)

  • 김동휘;김진원;임형덕;김대규;이우진
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.249-257
    • /
    • 2001
  • 본 논문에서는 경남 양산지역의 퇴적층에서 채취한 불교란 시료를 이용하여 표준압밀시험($IL_{CON}$)과 일정변형률(CRS, Constant Rates of Strain) 압밀시험을 수행한 후 각각의 시험결과를 분석하여 양산점토의 투수특성을 고찰하였다. 이를 위하여 투수계수와 간극비의 관계를 Kozeny(1927)와 Carman(1956) 이후 제안된 많은 연구결과와 비교, 검토하였으며, 시료를 연직방향으로 성형하여 CRS 시험을 수행한 후 횡방향투수계수를 산정하여 양산점토의 투수계수의 이방성을 살펴보았다. CRS시험 결과, 직접적으로 정상류를 발생시켜 누수계수를 측정하는 Rowe cell 시험에 비하여 상대적으로 투수계수의 이방성이 과소평가되는 경향을 보였다. 또한 현장 투수계수에 영향을 미치는 요소들을 살펴보고, 깊이에 따른 투수계수를 고찰하였다.다.

  • PDF

Evaluation of Permeability Characteristics of Kimhae Clay by Laboratory Tests. (실내실험을 통한 김해점토의 투수특성 평가)

  • 김동휘;임형덕;김진원;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.647-654
    • /
    • 2000
  • During consolidation, the permeability of clay decreases with void ratio because of the reduction in total void space. After Kozeny(1927) and Carman(1956), many researchers have proposed the relations between void ratio and permeability. Most of the relations are expressed in the following forms as : (1) log e - log k(1+e), (2) e - log k, or (3) log e - log k. These relations have been found valid for a large number of normally consolidated clays. From laboratory test(CRS and I $L_{CON}$) results, the relation between void ratio and permeability of Kimhae clay was well defined in all of the three forms. Permeability change index, $C_{k}$, of Kimhae clay was in the range of 0.64~1,03 and average value of $C_{k}$ was 0.821. And the test results satisfied the experimental correlation between $C_{k}$ and e, $C_{k}$=0.5e. In log e - log k(1+e) relation, constant C was in the range of 1.91~4.74$\times$10$^{-8}$ cm/sec and n was in the range of 3.74~4.60.c and n was in the range of 3.74~4.60.74~4.60.0.

  • PDF

Modelling of Permeability Reduction of Soil Filters due to Clogging (흙 필터재의 폐색으로 인한 투수성 저하 모델 개발)

  • ;;Reddi, Lakshmi.N
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.271-278
    • /
    • 1999
  • Soil filters are commonly used to protect the soil structures from eroding and piping. When filters are clogged by fine particles which are progressively accumulated, these may lead to buildup of excessive pore pressures also leading to instability in subsurface infrastructure. A filter in the backfill of a retaining wall, a filter adjacent to the lining of a tunnel, or a filter in the bottom of an earth dam can be clogged by transported fine particles. This causes reduction in the permeability, which in turn may lead to intolerable decreases in their drainage capacity. In this thesis, the extent of this reduction is addressed using results from both experimental and theoretical investigations. In the experimental phase, the permeability reduction of a filter is monitored when an influent of constant concentration flows into the filter (uncoupled test), and when the water flow through the soil-filter system to simulate an in-situ condition (coupled test), respectively. The results of coupled and uncoupled test are compared with among others. In the theoretical phase of the investigation, a representative elemental volume of the soil filter was modeled as an ensemble of capillary tubes and the permeability reduction due to physical clogging was simulated using basic principles of flow in cylindrical tubes. In general, it was found that the permeability was reduced by at least one order of magnitude, and that the results from the uncoupled test and theoretical investigations were in good agreement. It is observed that the amount of deposited particles of the coupled test matches fairly well with that of the uncoupled test, which indicates that the prediction of permeability reduction is possible by preforming the uncoupled test instead of the coupled test, and/or by utilizing the theoretical model.

  • PDF