• Title/Summary/Keyword: Korean workplace chemicals

Search Result 66, Processing Time 0.019 seconds

A Study on the Improvement of Safety Management of Hazardous Chemicals Handling in the Workplace (유해화학물질 취급작업장의 안전관리 개선에 관한 연구)

  • Jeong, Gyeong-Sam;Baik, Eun-Sun
    • Fire Science and Engineering
    • /
    • v.28 no.1
    • /
    • pp.12-19
    • /
    • 2014
  • Workplaces handling hazardous chemicals are scattered, because of old-aging facilities are have been operating for more than 20 years, there is still has the risk of an accident. Advanced countries including the UN and strengthen regulation of chemicals, but the frequent leak accidents have become a big issue socially. In the case of subsequent domestic accidental chemical accident, the government and related departments for the overall prevention, preparedness, response system has been checked and improved. In this study, improvements of the related system and the plan of safety management for on the prevention of accidents and the initial response were suggested throughout the analysis of problems on the actual condition of safety management and such as standard of the related systems for handling, management for occurring the main cause of the leak and chemical accidents from hazardous chemicals handling in the workplace.

Estimation of the Relative Risk of the Elderly with Different Evacuation Velocity in a Toxic Gas Leakage Accident (독성물질 누출 시 대피 속도 차이에 따른 고령자의 상대적 위험도 산정)

  • Lee, H.T.;Kwak, J.;Park, J.;Ryu, J.;Lee, J.;Jung, Seungho
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.6
    • /
    • pp.13-21
    • /
    • 2019
  • Leakage accidents in businesses dealing with hazardous chemicals can have a great impact on the workers inside the workplace, as well as residents outside the workplace. In fact, there were cases where hazardous chemicals leaked from many businesses. As a result, the Chemicals Control Act(CCA) was enacted in 2015, the Ministry of Environment introduced an Off-site Risk Assessment(ORA). The purpose of the ORA is to secure safety from the installation of the design of the workplace facilities so that chemical accidents of hazardous chemical handling facilities do not cause human or physical damage outside the workplace. In general, the ORA qualitatively determines where a protected facility is within the scope of the accident scenario. However, elderly who belong to the sensitive group is more sensitive than the general group under the same chemical accident effect, and the extent of the damage is serious. According to data from the Korea National Statistic Office, the number of elderly people is expected to increase steadily. Therefore, a quantitative risk analysis considering the elderly is necessary as a result of a chemical accident. In this study, accident scenarios for 14 locations were set up to perform emergency evacuation due to toxic gas leakage of Cl2(Chlorine) and HF(Hydrogen Fluoride), and the effects of exposure were analyzed based on the evacuation velocity difference of age 20s and 60s. The ALOHA(Areal Locations of Hazardous Atmospheres) program was used to calculate the concentration for assessing the effects. The time of exposure to toxic gas was calculated based on the time it took for the evacuation to run from the start point to the desired point and a methodology was devised that could be applied to the risk calculation. As a result of the study, the relative risk of the elderly, the sensitive group, needs to be determined.

유기용제노출사업장의 역학조사를 위한 기초연구(I)

  • Park Hui-Ryeon;Lee Nae-U;Choe Jae-Uk
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2001.11a
    • /
    • pp.303-308
    • /
    • 2001
  • Various organic solvents are most commonly using material in various factories, for examples, paint producting process and other industries, actually most of them are toxic materials, If many kinds of organic chemicals are concurrently exposed to workplace, toxidities can be influenced as additive effect or synergistic effect.(omitted)

  • PDF

Review Paper for Characterization of Photoionization Detector-Direct Reading Monitors (산업현장에 활용되는 PID 직독식장비의 특성 고찰)

  • Sungho Kim;Hae Dong Park;Eunsong Hwang
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.2
    • /
    • pp.93-102
    • /
    • 2023
  • Objectives: With the evolution of direct reading sensors, it is possible to monitor several substances through telecommunication. However, there are some limitations on the use of direct reading technologies in the Occupational Safety and Health Act in South Korea, which only applies to detector tubes, noise, heat, and carbon monoxides. The number of chemicals and their amount of use have been continuously increasing in South Korea. The Ministry of Employment and Labor (MoEL) has concerns about worker's health because exposure is only covered for about 1.2% of all distributed chemicals. Using a direct reading monitor with photoionization detectors (PID-DRMs), gases and vapors chemicals can be measured. Based on the data, business owners are able to create corrective strategies, provide better working routines, and select correct respiratory equipment. PID-DRMs are less expensive and easier to handle for an owner voluntarily controlling chemicals emitted in the workplace. However, there are several limitations on using these PID-DRMs to the degree that the MoEL has not been able to select a legal monitor. The aim of this study was to review previous studies related to PID-DRMs and identify the characterization and limitation on PID-DRMs. Methods: To search for related studies on PID-DRMs, key words were used including direct reading monitors/instruments and/or photoionization detectors. Through that, four domestic and 15 international studies were reviewed. Results: Studies on PID-DRMs were conducted by chamber (enclosed, dynamic, walk-in) and in the field (experimental environment, actual environment). The concentration of PID-DRMs and charcoal tubes were compared for a single substance or mixture, or within the PID-DRMs. There was a high correlation between the two concentrations, but it did not meet the accuracy criteria (95% confidence interval, within 25%) of the NIOSH technical report (2012). In addition, differences in measured values occurred according to environmental factors (temperature, humidity) and high concentration, and concentration values tended to be underestimated due to contamination of the sensor. As a way to improve the accuracy of PID concentration, it was proposed to use correction factors, charcoal tube-based correction factors, or to calibrate the PID-DRMs in the same environment as the workplace. Conclusions: PID-DRMs can likely be used by business owners for the purpose of voluntarily managing the workplace environment, and it is expected that it will be possible to use them as legal equipment if a PID sensor can be upgraded and the limitations of the sensor (temperature, humidity, high concentration evaluation, sensor pollution) can be overcome in the near future.

Survey of Actual Conditions of Material Safety Data Sheet and Quantitative Risk Assessment of Toxic Substances : Substitutes for Degreasing Agents (일부 대체세정제 제조업체의 물질안전보건자료의 실태와 그 화학물질의 유해성 평가에 관한 연구)

  • Yoon, Chong-Guk;Jeon, Tae-Won;Chung, Chin-Kap;Lee, Myung-Hee;Lee, Sang-Il;Cha, Sang-Eun;Yu, Il-Je
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.10 no.2
    • /
    • pp.18-26
    • /
    • 2000
  • Since the regulation of MSDS (Material Safety Data Sheets) had started from July 1996, employers were required to furnish MSDS for the chemicals in use in their workplace. However, many MSDS did not contain upright information for the chemicals, and they were not updated regularly, and were not written in the standard format required by the Industrial Safety and Health Act (ISHA). The purposes of this study were 1) to examine the reliability of MSDS for mixed solvents, 2) to provide reliable MSDS to employers or employees, 3) to find out any difficulties in implementing MSDS after the initiation, and 4) to promote regular MSDS updating and to ensure the reliability of MSDS for chemical manufacturers. To check the reliability of MSDS of mixed chemicals, 21 samples of mostly degreasing solvents were collected along with their MSDS from the work place. The samples were analyzed by gas chromatography-mass selective detector(GC-MSD). Their components were classified as saturated hydrocarbon, cyclic hydrocarbon, aromatics, and halogen containing hydrocarbon, and the amount of each class were measured. Manufacture's MSDS were compared with the actual composition of the collected samples, and further examined the reliability by checking whether the chemicals analyzed were included in the MSDS correctly. Finally, each item of MSDS was evaluated whether the MSDS correspond to the regulation required by ISHA. The results were following: 1) most of the degreasing solvents in MSDS were incorrect in their composition and contents, 2) the information in the MSDS including hazard classification, exposure level, toxicity, regulatory information were incorrectly provided, and 3) some MSDS did not disclose carcinogens in their MSDS. Continuous monitoring of MSDS was required to ensure reliability of MSDS. The Chemicals containing hydrocarbons from C10-C15 need to be tested to provide toxicity data. In addition, governmental support for providing correct MSDS was recommended to ensure reliability of MSDS. The MSDS regulation relating to the confidential business information may need to be revised to ensure reliability of MSDS.

  • PDF

QSAR Approach for Toxicity Prediction of Chemicals Used in Electronics Industries (전자산업에서 사용하는 화학물질의 독성예측을 위한 QSAR 접근법)

  • Kim, Jiyoung;Choi, Kwangmin;Kim, Kwansick;Kim, Dongil
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.2
    • /
    • pp.105-113
    • /
    • 2014
  • Objectives: It is necessary to apply quantitative structure activity relationship (QSAR) for the various chemicals with insufficient toxicity data that are used in the workplace, based on the precautionary principle. This study aims to find application plan of QSAR software tool for predicting health hazards such as genetic toxicity, and carcinogenicity for some chemicals used in the electronics industries. Methods: Toxicity prediction of 21 chemicals such as 5-aminotetrazole, ethyl lactate, digallium trioxide, etc. used in electronics industries was assessed by Toxicity Prediction by Komputer Assisted Technology (TOPKAT). In order to identify the suitability and reliability of carcinogenicity prediction, 25 chemicals such as 4-aminobiphenyl, ethylene oxide, etc. which are classified as Group 1 carcinogens by the International Agency for Research on Cancer (IARC) were selected. Results: Among 21 chemicals, we obtained prediction results for 5 carcinogens, 8 non-carcinogens and 8 unpredictability chemicals. On the other hand, the carcinogenic potential of 5 carcinogens was found to be low by relevant research testing data and Oncologic TM tool. Seven of the 25 carcinogens (IARC Group 1) were wrongly predicted as non-carcinogens (false negative rate: 36.8%). We confirmed that the prediction error could be improved by combining genetic toxicity information such as mutagenicity. Conclusions: Some compounds, including inorganic chemicals and polymers, were still limited for applying toxicity prediction program. Carcinogenicity prediction may be further improved by conducting cross-validation of various toxicity prediction programs, or application of the theoretical molecular descriptors.

Workplace Health and Safety Risk Factors and Management Plan for Female Workers (여성근로자의 작업장 건강안전위험요인 및 관리방안)

  • Kim, Soukyoung;Kim, Young Taek
    • Korean Journal of Occupational Health Nursing
    • /
    • v.29 no.4
    • /
    • pp.235-246
    • /
    • 2020
  • Purpose: In Korea, the proportion of female workers among occupational injury is steadily increasing. The purpose of this study was to identify the workplace risk factors that threaten the safety and health of the female workers. Methods: Qualitative study was conducted, using focus group interview. Data were collected from five focus groups of eighteen female workers who were working in the manufacturing, health service, and educational service industries. Results: The seven themes of occupational safety and health risks of women workers are as follows: 1) Workplace with various risks; 2) Sliding, falling, burning, and cutting accidents; 3) Chronically lasting musculoskeletal symptoms; 4) Chemicals that may be harmful to workers; 5) Unprotected infectious disease; 6) Psychological safety accidents(Relationship conflict and emotional labor); 7) Loud, hot, stuffy, scary, and tired. Conclusion: The Occupational Safety & Health (OSH) Act should be rearranged gender sensitively and women's participation in the OSH decision-making process should be guaranteed. OSH education should be properly implemented in the field, and support should be provided for women workers in small businesses. A supportive organizational culture for marriage, pregnancy and childbirth should be established, and the working environment should be provided safely, taking into account gender differences.

A Comparison of Dose-Response Assessments for CMR Materials in the Workplace (작업장에서 취급하는 CMR물질의 용량반응평가 방법 비교)

  • Lee, Kyung Hwa;Choi, Han Young;Kim, Chi Nyon;Roh, Young Man;Choi, Hee Jin;Park, Chae Ri
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.1
    • /
    • pp.51-60
    • /
    • 2018
  • Objectives: Currently, there is only limited knowledge regarding the hazard of low-level exposure to CMR materials in workplaces. To overcome this limitation, a reference concentration for workers($RfC_w$) from among the risk assessment tools proposed by the US EPA is widely used to set a provisional workplace exposure level(PWEL) for CMR materials for which there are no established Korea Occupational Exposure Limits(KOELs) or subjective chemicals for work environment measurements as regulated by Korea Ministry of Employment and Labor(KMOEL). A simple European calculator of derived no effect level(SECO-DNEL) as proposed by REACH can also be used in place of $RfC_w$ to set the PWEL for chemicals. This study was performed to test the acceptability of using SECO-DNEL as an alternative to $RfC_w$ when setting a PWEL for low-level exposures. Methods: The $RfC_w$ and DNEL for the five CMR materials of dinitrogen oxide, catechol, 2-phenoxy ethanol, carbitol, and carbon black were calculated using the dose-response assessments of the US EPA for $RfC_w$ and REACH guidance for SECO-DNEL, respectively. They were compared using paired t-tests to determine the statistical differences between them. Results: For the five chemicals, the $RfC_w$ were 2.53 ppm, 0.10 ppm, 1.73 ppm, 1.66 ppm, and $0.05mg/m^3$, respectively, while the SECO-DNEL were 2.01 ppm, 0.11 ppm, 1.83 ppm, 1.77 ppm, $0.14mg/m^3$, respectively. There was no statistically significant difference between $RfC_w$ and SECO-DNEL. Conclusions: This study suggests that the SECO-DNEL could be applied in place of $RfC_w$ to set a PWEL for low-level exposure to chemicals, especially CMR materials. To further ensure the reliability of SECO-DNEL as an alternative tool, more chemicals should be applied for calculation and comparison with $RfC_w$.

Task-Specific Hazardous Chemicals Used by Nail Shop Technicians (네일 샵 종사자들의 직무 형태별 취급 유해화학물질)

  • Choi, Sangjun;Park, Sung-Ae;Yoon, Chungsik;Kim, Sunju
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.4
    • /
    • pp.446-464
    • /
    • 2015
  • Objectives: This study was conducted to evaluate the task-specific hazards of chemicals used by nail technicians in Daegu Metropolitan City. Materials: A total of 30 nail shops located in Daegu City were surveyed to investigate the major tasks and practices performed by nail technicians and the ingredients listed in nail care products used in shops. We also collected instructions for use and material safety data sheets(MSDSs) of nail care products and compared CAS Nos. of ingredients with the lists of chemicals regulated by the Industrial Safety and Health Act(ISHA) and Chemical Substances Control Act(CSCA). Results: A total of 125 chemical ingredients were found in 468 nail care products used at the 30 nail shops. The most frequently found ingredients were ethyl acetate(72%), followed by n-butyl acetate(71.8%), isopropanol(56%), benzophenone(51.1%), nitrocellulose(46.4%) and ethanol(45.3%). Comparing six tasks, the task of manicuring used the most products at 222 products containing 91 ingredients. Among the 125 ingredients, there are 31 chemicals with occupational exposure limits(OEL) designated by the Ministry of Employment and Labor(MoEL), eight categorized as carcinogens, one mutagen and two reproductive toxic chemicals. In terms of carcinogens, formaldehyde was identified as the only confirmed human carcinogen(1A). We found that there was one chemical with a permissible limit, one special management substance, 18 workplace monitoring substances and ten special health diagnosis substances regulated by ISHA. For CSCA, nine poisonous substances, six substances requiring preparation for accidents and one restricted substance were identified. Conclusions: Based on these findings, formaldehyde was identified as one of the chemicals that should most strictly be controlled for the protection of the health of nail technicians and customers. At the same time, it is necessary to distribute materials with detailed hazardous information of nail care products for nail shop technicians.

Organic Solvent Exposure of Thinner-Using Occupation and Its Treatment by Means of $TiO_2$ Photocatalyst (신너사용 작업장의 유기용제 노출 및 $TiO_2$ 광촉매를 이용한 BTX처리에 관한 연구)

  • 양원호;김현용;손부순;박종안
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.2
    • /
    • pp.26-33
    • /
    • 2002
  • Ultimate objective of industrial hygiene is the prevention of health impairment that may result from exposure to chemicals at workplace. Workers in solvent thinner-using occupation environment may be highly exposed to VOCs (volatile organic compounds) because solvent thinner has been used extensively such as painting, spraying, degreasing, coating and so on in Korea. The purpose of this study was to recognize, evaluate, and propose the control methods of VOCs from solvent thinner-using workplace. Five target volatile organic compounds (benzene, toluene, ethylbenzene, o-xylene, and m-xylene) were monitored in H company of Shiwa Industrial Complex and analyzed in perosnal, occupational indoor and outdoor during working hours simultaneously. Engineering control such as local ventilation should be made in considering the long-term exposure, though measured VOCs concentration did not exceed the workplace exposure standards. In addition, air cleaning device should be installed in local ventilation because Shiwa Industrial Complex has had the serious ambient air pollution. Currently, environmental purification using $TiO_2$ photocatalyst have attracted a great deal of attention with increasing number of recent environmental problems. In this study, $TiO_2$ sol coated on the ceramic bead was prepared by sol-gel method and the photodegradation of target compounds was investigated in gas phase by the exposure to UV-A lamp(365nm) in a batch system.