Lee YongJu;Lee Sook-hyang;Kim Jong-Jin;Go Hyeon-Ju;Kim Yeong-Il;Kim Sang-Hun;Lee Jeong-Cheol
MALSORI
/
no.35_36
/
pp.131-143
/
1998
This study describes an algorithm for the F0 contour generation system for Korean sentences and its evaluation results. 400 K-ToBI labeled utterances were used which were read by one male and one female announcers. F0 contour generation system uses two classification trees for prediction of K-ToBI labels for input text and 11 regression trees for prediction of F0 values for the labels. Evaluation results of the system showed 77.2% prediction accuracy for prediction of IP boundaries and 72.0% prediction accuracy for AP boundaries. Information of voicing and duration of the segments was not changed for F0 contour generation and its evaluation. Evaluation results showed 23.5Hz RMS error and 0.55 correlation coefficient in F0 generation experiment using labelling information from the original speech data.
Hyunsang Lee;Wonseok Lee;Bogeun Jo;Heejun Lee;Sangjin Oh;Sangwoo You;Maru Nam;Hyunsik Lee
KIPS Transactions on Software and Data Engineering
/
v.12
no.11
/
pp.471-480
/
2023
The Korean construction order volume in South Korea grew significantly from 91.3 trillion won in public orders in 2013 to a total of 212 trillion won in 2021, particularly in the private sector. As the size of the domestic and overseas markets grew, the scale and complexity of EPC (Engineering, Procurement, Construction) projects increased, and risk management of project management and ITB (Invitation to Bid) documents became a critical issue. The time granted to actual construction companies in the bidding process following the EPC project award is not only limited, but also extremely challenging to review all the risk terms in the ITB document due to manpower and cost issues. Previous research attempted to categorize the risk terms in EPC contract documents and detect them based on AI, but there were limitations to practical use due to problems related to data, such as the limit of labeled data utilization and class imbalance. Therefore, this study aims to develop an AI model that can categorize the contract terms based on the FIDIC Yellow 2017(Federation Internationale Des Ingenieurs-Conseils Contract terms) standard in detail, rather than defining and classifying risk terms like previous research. A multi-text classification function is necessary because the contract terms that need to be reviewed in detail may vary depending on the scale and type of the project. To enhance the performance of the multi-text classification model, we developed the ELECTRA PLM (Pre-trained Language Model) capable of efficiently learning the context of text data from the pre-training stage, and conducted a four-step experiment to validate the performance of the model. As a result, the ensemble version of the self-developed ITB-ELECTRA model and Legal-BERT achieved the best performance with a weighted average F1-Score of 76% in the classification of 57 contract terms.
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.256-258
/
2003
정보화 시대에는 사람들의 모든 활동이 인터넷을 통해서 대부분 이루어진다. 이중에서 전자 메일이 차지하는 비중은 매우 크다. 고객 유치를 위한 기업들의 광고와 배움을 위한 강의, 자신의 관심 분야에 대한 정보 등을 전자 매일로 받아보게 되는 것이 더 많아 질것이다. 이러한 상황에서 사람들은 자신이 필요로 하는 메일과 필요로 하지 않는 메일을 분류하는데 많은 시간을 낭비한다. 사람들은 이러한 시간 낭비를 줄이기 위해서 메일 분류 시스템을 사용한다. 현재 사용되고 있는 매일 분류 시스템은 스팸 매일을 기준으로 하고 있다. 그러나 오분류되는 메일들이 있어 사용자가 스팸 메일을 다시 보는 경우가 있어 한계를 보인다. 본 논문에서는 사람들이 자신이 원하는 메일과 그렇지 않은 메일을 분류하기 위해서 1차 분류로 긍정어와 부정어를 이용하여 전자 메일을 분류하고 2차 분류로 도메인 네임을 이용하여 분류한다.
The Transactions of The Korean Institute of Electrical Engineers
/
v.58
no.3
/
pp.632-638
/
2009
Probabilistic Latent Semantic Analysis has many applications in information retrieval and filtering, natural language processing, machine learning from text, and in related areas. In this paper, we propose an algorithm using weighted Probabilistic Latent Semantic Analysis Model to find the contextual phrases and opinions from documents. The traditional keyword search is unable to find the semantic relations of phrases, Overcoming these obstacles requires the development of techniques for automatically classifying semantic relations of phrases. Through experiments, we show that the proposed algorithm works well to discover semantic relations of phrases and presents the semantic relations of phrases to the vector-space model. The proposed algorithm is able to perform a variety of analyses, including such as document classification, online reputation, and collaborative recommendation.
'Sanghallonju'(傷寒論注) reorganized the formation according to method of 'the classification of similar symptoms' and annotated the text of Sanghallon, introducing his new methodology and 'Sanghallonik'(傷寒論翼) proclaimed his new finding of the science of the Sanghan. Meanwhile, 'Sanghanbuik' (傷寒附翼) explains various prescriptions in the 'Sanghallon'. It categorizes prescriptions according to the six Meridians and sum up Gageum's research by commenting on the target symtoms and the use of medicine on each prescriptions. Gageum's study is consistent in desire for embodying the universality of the differentiation of syndromes in accordance with the theory of the six Meridians.(六經辨證) in the medical scene. From his work, the substantiality of the six 'Sanghandbuik' is a publication that shows the essence of Gageum's medical science from his inclination, conclusion and concrete methodology.
Proceedings of the Korean Information Science Society Conference
/
2006.06b
/
pp.358-360
/
2006
LDA는 그룹간 간격을 최대화하고 그룹내 분산을 최소화하는 선형변환을 구함으로써 차원 감소된 공간에서 분별력(classification performance)을 높이는 선형 차원 감소 방법이다. 본 논문에서는 저샘플 문제(undersampled problem)에서 LDA를 적용할 수 있도록 QR-분해를 이용한 효율적인 차원 감소 방법을 제안한다. 특히 제안되는 방법은 문서 분류 문제에서처럼 한 문서가 몇 개의 카테고리에 중복적으로 속하는 경우 등 데이터의 독립성이 보장되지 않는 경우에도 효과적으로 적용될 수 있다는 장점이 있다.
Proceedings of the Korean Information Science Society Conference
/
2007.06d
/
pp.365-369
/
2007
인터넷이 폭 넓게 보급되어 온라인 상에서 얻을 수 있는 텍스트 정보의 양이 급증함에 따라 산재해 있는 문서들에 대한 효과적인 정보 관리 및 검색이 요구되고 있다. 자동 문서분류란 문서의 내용에 기반하여 미리 정의되어 있는 범주에 문서를 자동으로 할당하는 작업으로써 효율적인 정보 관리 및 검색을 가능하게 한다. 하지만 자동문서 분류를 하기 위해서는 방대한 양의 데이터를 수집 보관하기 위한 분산 환경이 반드시 필요하다. 본 논문에서는 자동 문서분류를 위한 분산기반 환경의 조성에 있어서 RTI(Run Time Infrastructure)를 통한 분산 시스템 환경으로 구성하였다.
Proceedings of the Korean Information Science Society Conference
/
2000.04b
/
pp.262-264
/
2000
텍스트 문서 분류는 텍스트 형태로 주어진 문서를 종류별로 구분하는 작업으로 웹페이지 검색, 뉴스 그룹 검색, 메일 필터링 등이 분야에 응용될 수 있는 기반 작업이다. 지금까지 문서를 분류하는데는 k-NN, 신경망 등 여러 가지 기계학습 기법이 이용되어 왔다. 이 논문에서는 베이지안망을 이용해서 텍스트 문서 분류를 행한다. 베이지안망은 다수의 변수들간의 확률적 관계를 표현하는 그래프 모델로 DAG 형태인 망 구조와 각 노드에 연관된 지역확률분포로 구성된다. 그래프 모델을 사용할 경우 학습에 이용되는 각 속성들간의 관계를 사람이 알아보기 쉬운 형태로 학습할 수 있다는 장점이 있다. 실험 데이터로는 Reuters-21578 문서분류데이터를 이용했으며 베이안망의 성능은 나이브 베이즈 분류기와 비슷했다.
Proceedings of the Korean Information Science Society Conference
/
2011.06c
/
pp.255-257
/
2011
본 연구에서는 각종 웹사이트와 이메일을 통해 전달되는 회의공지에 포함된 회의장소를 나타내는 문자열로부터 실제 위치를 추정하는 시스템을 설계 및 구현하였다. 직접 구현한 NER과 Relation-type Classification 모듈을 사용하였으며, 장소에 대한 모델은 기존의 지리정보시스템들과의 상호 운용성을 위하여 OpenStreetMap[6]과 Geonames[7]의 데이터 구조를 참조하여 설계되었고, 실제 위치를 구하기 위하여 내부자원 외에도, 각종 오픈API들을 외부자원으로 활용하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2018.07a
/
pp.540-541
/
2018
최근 특허분석의 중요성이 부각되고 있다. 특허분석을 위해 검색된 특허 중 노이즈 특허를 분류하는 작업은 많은 시간과 비용을 요구한다. 본 논문에서는 효율적인 특허분석을 위한 노이즈 특허 분류 성능의 비교를 진행한다. 그리고 비교한 결과를 통해 노이즈 특허 분류에 최적의 모형을 찾는 것을 목표로 한다. 듀얼 카메라 특허 603건을 이용하여 실제 실험을 실시한 결과, 나이브 베이지안 분류 모형의 분류 성능이 가장 우수하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.