With the recent advances in technology, automatic speech recognition (ASR) has been widely used in real-world applications. The efficiency of converting large amounts of speech into text accurately with limited resources has become more vital than ever. In this study, we propose a method to rapidly recognize a large speech database via a transformer-based end-to-end model. Transformers have improved the state-of-the-art performance in many fields. However, they are not easy to use for long sequences. In this study, various techniques to accelerate the recognition of real-world speeches are proposed and tested, including decoding via multiple-utterance-batched beam search, detecting end of speech based on a connectionist temporal classification (CTC), restricting the CTC-prefix score, and splitting long speeches into short segments. Experiments are conducted with the Librispeech dataset and the real-world Korean ASR tasks to verify the proposed methods. From the experiments, the proposed system can convert 8 h of speeches spoken at real-world meetings into text in less than 3 min with a 10.73% character error rate, which is 27.1% relatively lower than that of conventional systems.
This paper proposes a method for Korean comparative sentence classification which is a part of comparison mining. Comparison mining, one area of text mining, analyzes comparative relations from the enormous amount of text documents. Three-step process is needed for comparison mining - 1) identifying comparative sentences in the text documents, 2) classifying those sentences into several classes, 3) analyzing comparative relations per each comparative class. This paper aims at the second task. In this paper, we use transformation-based learning (TBL) technique which is a well-known learning method in the natural language processing. In our experiment, we classify comparative sentences into seven classes using TBL and achieve an accuracy of 80.01%.
Journal of the Korea Society of Computer and Information
/
v.11
no.2
s.40
/
pp.15-23
/
2006
Millions of documents are already on the Internet, and new documents are being formed all the time. This poses a very important problem in the management and querying of documents to classify them on the Internet by the most suitable means. However, most users have been using the document classification method based on a keyword. This method does not classify documents efficiently, and there is a weakness in the category of document that includes meaning. Document classification by a person can be very correct sometimes and often times is required. Therefore, in this paper, We wish to classify documents by using a neural network algorithm and C4.5 algorithms. We used resume data forming by XML for a document classification experiment. The result showed excellent possibilities in the document category. Therefore, We expect an applicable solution for various document classification problems.
Journal of the Korean Society for information Management
/
v.22
no.1
s.55
/
pp.105-123
/
2005
The most of all, this study is planned to search an ideal methods to develop the digital library system for our korean ancient books for their safe preservation and, at the same time, for their perusal of transcendental time and space : first. to offer the various access points like traditional oriental Four parts Classics classification, current subject classification and index keyword, etc. : second, to program a digital library system using MARC or XML, but with all bibliographic descriptive elements as possible; third, to prepare the more easy annotated bibliography and index for users' better comprehension, and last, to build original text database for practical reading to avoid the damage of original text. This type of korean ancient books digital library will be developed to the real international bibliographic control by networking enter the same kinds of internal and external organizations.
The major educational goal of reading part, which occupies important portion in Korean language in Korean SAT, is to evaluated whether a given text can be fully understood. Therefore given questions in the exam must be able to solely solvable by given text. In this paper we developed a datatset based on Korean SAT's reading part in order to evaluate whether a deep learning language model can classify if the given question is true or false, which is a binary classification task in NLP. In result, by applying language model solely according to the passages in the dataset, we were able to acquire better performance than 59.2% in F1 score for human performance in most of language models, that KoELECTRA scored 62.49% in our experiment. Also we proved that structural limit of language models can be eased by adjusting data preprocess.
Wikipedia infoboxes have emerged as an important structured information source on the web. To compose infobox for an article, considerable amount of manual effort is required from an author. Due to this manual involvement, infobox suffers from inconsistency, data heterogeneity, incompleteness, schema drift etc. Prior works attempted to solve those problems by generating infobox automatically based on the corresponding article text. However, there are many articles in Wikipedia that do not have enough text content to generate infobox. In this paper, we present an automated approach to generate infobox for movie domain of Wikipedia by extracting information from several sources of the web instead of relying on article text only. The proposed methodology has been developed using semantic relations of article content and available semi-structured information of the web. It processes the article text through some classification processes to identify the template from the large pool of template list. Finally, it extracts the information for the corresponding template attributes from web and thus generates infobox. Through a comprehensive experimental evaluation the proposed scheme was demonstrated as an effective and efficient approach to generate Wikipedia infobox.
Recently, Deep learning analysis of unstructured text data using language models, such as Google's BERT and OpenAI's GPT has shown remarkable results in various applications. Most language models are used to learn generalized linguistic information from pre-training data and then update their weights for downstream tasks through a fine-tuning process. However, some concerns have been raised that privacy may be violated in the process of using these language models, i.e., data privacy may be violated when data owner provides large amounts of data to the model owner to perform fine-tuning of the language model. Conversely, when the model owner discloses the entire model to the data owner, the structure and weights of the model are disclosed, which may violate the privacy of the model. The concept of offsite tuning has been recently proposed to perform fine-tuning of language models while protecting privacy in such situations. But the study has a limitation that it does not provide a concrete way to apply the proposed methodology to text classification models. In this study, we propose a concrete method to apply offsite tuning with an additional classifier to protect the privacy of the model and data when performing multi-classification fine-tuning on Korean documents. To evaluate the performance of the proposed methodology, we conducted experiments on about 200,000 Korean documents from five major fields, ICT, electrical, electronic, mechanical, and medical, provided by AIHub, and found that the proposed plug-in model outperforms the zero-shot model and the offsite model in terms of classification accuracy.
Journal of the Korea Society of Computer and Information
/
v.25
no.5
/
pp.187-197
/
2020
Recently, various methods of text embedding using deep learning algorithms have been proposed. Especially, the way of using pre-trained language model which uses tremendous amount of text data in training is mainly applied for embedding new text data. However, traditional pre-trained language model has some limitations that it is hard to understand unique context of new text data when the text has too many tokens. In this paper, we propose self-supervised learning-based fine tuning method for pre-trained language model to infer vectors of long-text. Also, we applied our method to news articles and classified them into categories and compared classification accuracy with traditional models. As a result, it was confirmed that the vector generated by the proposed model more accurately expresses the inherent characteristics of the document than the vectors generated by the traditional models.
Recently, a big text data has been produced by users, an opinion mining to analyze information and opinion about users is becoming a hot issue. Of the opinion mining, especially a sentiment analysis is a study for analysing emotions such as a positive, negative, happiness, sadness, and so on analysing personal opinions or emotions for commercial products, social issues and opinions of politician. To analyze the sentiment analysis, previous studies used a mapping method setting up a distribution of emotions using two dimensions composed of a valence and arousal. But previous studies set up a distribution of emotions arbitrarily. In order to solve the problem, we composed a distribution of 12 emotions through carrying out a survey using Korean emotion words list. Also, certain emotional states on two dimension overlapping multiple emotions, we proposed a selection method with Roulette wheel method using a selection probability. The proposed method shows to classify a text into emotion extracting emotion terms from a text.
Journal of Korean Library and Information Science Society
/
v.12
/
pp.161-198
/
1985
This paper is a study of the organization and use of theses collections in university libraries of Korea. A questionnaire consisted of 31 questions on 6 items was sent to 44 university libraries of which 40 libraries responded. Results of the study can be summarized as follows: 1. Figures concerning registration of theses can be tabulated as follows. 2. In differentiation of oriental and occidental theses, 20 libraries (50%) depend on the basis of the text language. 3. Thirty-four libraries (85%) classify the theses and 27 (80%) of them use the same tables with book classification schedules. For classification level, 17 libraries (48.6%) classify them in section numbers whereas 13 (37.1%) in sub-sections. 4. Catalog or index cards of theses are made in 35 libraries (87.5%) of which 20 libraries are using the second level of bibliographic description. 5. Roman alphabets in a title are described a such 27 libraries (67.5%). 6. Most of respondents are preparing author, title and classified catalog cards for users. The research reveals that only 8 libraries are giving subject headings to the theses. 7. Twenty-three libraries (63.9%) have theses catalogs in separation from their book catalogs. 8. Most helpful bibliographic elements in an entry for users are reported to be author, title, date and notes. In general, theses collections have many different features in various aspects compared with book materials. Therefore it is desirable to process the former differently with the latter. Firstly, it would be more convenient to register theses on the different register from the book register. Secondly, minute classification of theses would be necessary for their users. thirdly, text language is the common basis of discriminating oriental materials and occidental ones. Fourthly, a simple catalog would be quite good enough to use theses collection, for most helpful elements in an entry are limited to author, title, date and notes. Fifthly, it is strongly recommendable to transcribe all the roman alphabets on the titles into Korean alphabets. Sixthly, the research revealed that our library would needs to develop subject heading work which is for behind other library works.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.