This paper presents research about the development of electrical fire cause classification in order to improve the reliability of electrical fire statistics and to collect electrical fires data efficiently. The incorrect and biased knowledge for electrical fires changed the classification of certain types of fires, from non-electrical to electrical. It is convenient and required to develop the standardized form that makes, in the assessment of the cause of electrical fires, the fire investigators directly ticking the appropriate box on the fire report form or making an assessment of a text description. In this study, newly developed electrical fire cause classification structure, which is well-defined hierarchical structure so that there are not any relationship or overlap between cause categories, is suggested. Also the suggested classification structure can be used for electrical fire investigation and statistics, which minimizes the mistake that diagnose non-electrical fires into electrical ones.
This paper aims at the statistical analysis of electrical fire and classification of electrical fire causes to collect electrical fires data efficiently. Electrical fire statistics are produced to monitor the number and characteristics of fires attended by fire fighters, including the causes and effects of fire so that action can be taken to reduce the human and financial cost of fire. Electrical fires make up the majority of fires in Korea(including nearly 30% of total fires according to recent figures), The incorrect and biased knowledge for electrical fires changed the classification of certain types of fires, from non-electrical to electrical. It is convenient and required to develop the standardized form that makes, in the assessment of the cause of electrical fires, the fire fighters directly ticking the appropriate box on the fire report form or making an assessment of a text description. Therefore, it is highly recommended to develop electrical fire cause classification and electrical fire assessment on the fire statistics in order to categorize and assess electrical fires exactly. In this paper newly developed electrical fire cause classification structure, which is well-defined hierarchical structure so that there are not any relationship or overlap between cause categories, is suggested. Also fire statistics systems of foreign countries are introduced and compared.
Park, Seojeong;Lee, Soobin;Kim, Woo Jung;Song, Min
Journal of the Korean Society for information Management
/
v.39
no.1
/
pp.91-117
/
2022
The number of depressed patients in Korea and around the world is rapidly increasing every year. However, most of the mentally ill patients are not aware that they are suffering from the disease, so adequate treatment is not being performed. If depressive symptoms are neglected, it can lead to suicide, anxiety, and other psychological problems. Therefore, early detection and treatment of depression are very important in improving mental health. To improve this problem, this study presented a deep learning-based depression tendency model using Korean social media text. After collecting data from Naver KonwledgeiN, Naver Blog, Hidoc, and Twitter, DSM-5 major depressive disorder diagnosis criteria were used to classify and annotate classes according to the number of depressive symptoms. Afterwards, TF-IDF analysis and simultaneous word analysis were performed to examine the characteristics of each class of the corpus constructed. In addition, word embedding, dictionary-based sentiment analysis, and LDA topic modeling were performed to generate a depression tendency classification model using various text features. Through this, the embedded text, sentiment score, and topic number for each document were calculated and used as text features. As a result, it was confirmed that the highest accuracy rate of 83.28% was achieved when the depression tendency was classified based on the KorBERT algorithm by combining both the emotional score and the topic of the document with the embedded text. This study establishes a classification model for Korean depression trends with improved performance using various text features, and detects potential depressive patients early among Korean online community users, enabling rapid treatment and prevention, thereby enabling the mental health of Korean society. It is significant in that it can help in promotion.
Journal of the Korean Society for information Management
/
v.1
no.1
/
pp.78-99
/
1984
In this paper, the automatic keyword classification which is one of the automatic construction methods of retrieval thesaurus is experimented to the Korean language on the basis that the use of retrieval thesaurus would increase the efficiency of information retrieval in the natural language retrieval system searching machine-readable data base. Furthermore, this paper proposes the application methods. In this experiment, the automatic keyword classification was based on the assumption that semantic relationships between terms can be found out by the statistical patterns of terms occurring in a text.
The text such as stories, blogs, chat, message and reviews have the overall emotional flow. It can be classified to the text having similar emotional flow if we compare the similarity between texts, and it can be used such as recommendations and opinion collection. In this paper, we extract emotion terms from the text sequentially and analysis emotion terms in the pleasantness-unpleasantness and activation dimension in order to identify the emotional flow of the text. To analyze the 'dominant emotion' which is the overall emotional flow in the text, we add the time dimension as sequential flow of the text, and analyze the emotional flow in three dimensional space: pleasantness-unpleasantness, activation and time. Also, we suggested that a classification method to compute similarity of the emotional flow in the text using the Euclidean distance in three dimensional space. With the proposed method, we analyze the dominant emotion in korean modern short stories and classify them to similar dominant emotion.
Journal of the Korean Society for information Management
/
v.33
no.2
/
pp.33-59
/
2016
This study examined the factors affecting the performance of automatic classification for the domestic conference papers based on machine learning techniques. In particular, In view of the classification performance that assigning automatically the class labels to the papers in Proceedings of the Conference of Korean Society for Information Management using Rocchio algorithm, I investigated the characteristics of the key factors (classifier formation methods, training set size, weighting schemes, label assigning methods) through the diversified experiments. Consequently, It is more effective that apply proper parameters (${\beta}$, ${\lambda}$) and training set size (more than 5 years) according to the classification environments and properties of the document set. and If the performance is equivalent, I discovered that the use of the more simple methods (single weighting schemes) is very efficient. Also, because the classification of domestic papers is corresponding with multi-label classification which assigning more than one label to an article, it is necessary to develop the optimum classification model based on the characteristics of the key factors in consideration of this environment.
Computational techniques for topic classification can support qualitative research by automatically applying labels in preparation for qualitative analyses. This paper presents an evaluation of supervised learning techniques applied to one such use case, namely, that of labeling emotions, instructions and information in suicide notes. We train a collection of one-versus-all binary support vector machine classifiers, using cost-sensitive learning to deal with class imbalance. The features investigated range from a simple bag-of-words and n-grams over stems, to information drawn from syntactic dependency analysis and WordNet synonym sets. The experimental results are complemented by an analysis of systematic errors in both the output of our system and the gold-standard annotations.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.16
no.2
/
pp.81-86
/
2016
Term weighting is a popular technique that effectively weighs the term features to improve accuracy in document classification. While several successful term weighting algorithms have been suggested, none of them appears to perform well consistently across different data domains. In this paper we propose several reasonable methods to combine different term weight vectors to yield a robust document classifier that performs consistently well on diverse datasets. Specifically we suggest two approaches: i) learning a single weight vector that lies in a convex hull of the base vectors while minimizing the class prediction loss, and ii) a mini-max classifier that aims for robustness of the individual weight vectors by minimizing the loss of the worst-performing strategy among the base vectors. We provide efficient solution methods for these optimization problems. The effectiveness and robustness of the proposed approaches are demonstrated on several benchmark document datasets, significantly outperforming the existing term weighting methods.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.12
/
pp.5877-5897
/
2018
With the popularity of mobile networks and smartphones, geo-textual publish/subscribe messaging has attracted wide attention. Different from the traditional publish/subscribe format, geo-textual data is published and subscribed in the form of dynamic data flow in the mobile network. The difference creates more requirements for efficiency and flexibility. However, most of the existing Top-k geo-textual publish/subscribe schemes have the following deficiencies: (1) All publications have to be scored for each subscription, which is not efficient enough. (2) A user should take time to set a threshold for each subscription, which is not flexible enough. Therefore, we propose an efficient and flexible Top-k geo-textual publish/subscribe scheme. First, our scheme groups publish and subscribe based on text classification. Thus, only a few parts of related publications should be scored for each subscription, which significantly enhances efficiency. Second, our scheme proposes an adaptive publish/subscribe matching algorithm. The algorithm does not require the user to set a threshold. It can adaptively return Top-k results to the user for each subscription, which significantly enhances flexibility. Finally, theoretical analysis and experimental evaluation verify the efficiency and effectiveness of our scheme.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.