• Title/Summary/Keyword: Korean text classification

Search Result 413, Processing Time 0.049 seconds

A Study on Book Categorization in Social Sciences Using kNN Classifiers and Table of Contents Text (목차 정보와 kNN 분류기를 이용한 사회과학 분야 도서 자동 분류에 관한 연구)

  • Lee, Yong-Gu
    • Journal of the Korean Society for information Management
    • /
    • v.37 no.1
    • /
    • pp.1-21
    • /
    • 2020
  • This study applied automatic classification using table of contents (TOC) text for 6,253 social science books from a newly arrived list collected by a university library. The k-nearest neighbors (kNN) algorithm was used as a classifier, and the ten divisions on the second level of the DDC's main class 300 given to books by the library were used as classes (labels). The features used in this study were keywords extracted from titles and TOCs of the books. The TOCs were obtained through the OpenAPI from an Internet bookstore. As a result, it was found that the TOC features were good for improving both classification recall and precision. The TOC was shown to reduce the overfitting problem of imbalanced data with its rich features. Law and education have high topic specificity in the field of social sciences, so the only title features can bring good classification performance in these fields.

SMS Text Messages Filtering using Word Embedding and Deep Learning Techniques (워드 임베딩과 딥러닝 기법을 이용한 SMS 문자 메시지 필터링)

  • Lee, Hyun Young;Kang, Seung Shik
    • Smart Media Journal
    • /
    • v.7 no.4
    • /
    • pp.24-29
    • /
    • 2018
  • Text analysis technique for natural language processing in deep learning represents words in vector form through word embedding. In this paper, we propose a method of constructing a document vector and classifying it into spam and normal text message, using word embedding and deep learning method. Automatic spacing applied in the preprocessing process ensures that words with similar context are adjacently represented in vector space. Additionally, the intentional word formation errors with non-alphabetic or extraordinary characters are designed to avoid being blocked by spam message filter. Two embedding algorithms, CBOW and skip grams, are used to produce the sentence vector and the performance and the accuracy of deep learning based spam filter model are measured by comparing to those of SVM Light.

Research on Multi-facted News Article Classification Models Classifying Subjects, Geographies and Genres (심층 주제, 지역, 장르를 모두 분류할 수 있는 다면적 뉴스 기사 자동 분류 모델 연구)

  • Hyojin Lee;SungPil Choi
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.58 no.3
    • /
    • pp.65-89
    • /
    • 2024
  • This study developed a model to classify news articles into categories of topic, genre, and region using a Korean Pre-trained Language model. To achieve this, a new news article classification system was designed by referring to the classification systems of domestic media outlets. The topic and genre classification models were implemented as hierarchical classification models that link the main categories and subcategories, and their performance was compared with that of an integrated category model. The evaluation results showed that the hierarchical structure classification model had the advantage of providing more precise categorization in ambiguous or overlapping categories compared to the integrated category model. For regional classification of news articles, a model was built to classify into 18 categories, and for regional news articles, the regional characteristics were clearly reflected in the text, resulting in high performance. This study demonstrated the effectiveness of classifying news articles from multiple perspectives-topic, genre, and region-and emphasized the significance of suggesting the potential for a multi-dimensional news article classification service that meets user needs.

Using Text Mining Techniques for Intrusion Detection Problem in Computer Network (텍스트 마이닝 기법을 이용한 컴퓨터 네트워크의 침입 탐지)

  • Oh Seung-Joon;Won Min-Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.5 s.37
    • /
    • pp.27-32
    • /
    • 2005
  • Recently there has been much interest in applying data mining to computer network intrusion detection. A new approach, based on the k-Nearest Neighbour(kNN) classifier, is used to classify Program behaviour as normal or intrusive. Each system call is treated as a word and the collection of system calls over each program execution as a document. These documents are then classified using kNN classifier, a Popular method in text mining. A simple example illustrates the proposed procedure.

  • PDF

Distribution of Medicinal Plants included in the Korean Pharmacopoeia at Cheongoksan Bonghwagun in Korea (봉화군 청옥산에 분포하는 대한민국약전 수재 약용식물의 분포 특성)

  • Song, Hong Seon;Gim, Mung Hea;Lee, Geo Lyong;Kim, Seong Min
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.4
    • /
    • pp.268-275
    • /
    • 2013
  • This text was analyzed and investigated the distribution of medicinal plants in Cheongoksan Bonghwagun Korea, in order to search the medicinal resources that are used in modern medicine. Medicinal plants of the Korean Pharmacopoeia (10th edition) distributed in Cheongoksan Bonghwagun were consisted of 93 taxa ; 82 species, 10 varieties, 1 forma of 79 genus, 50 families. In medicinal plants of the Korean Pharmacopoeia, rate of native species and exotic species was 89.2% (83 taxa) and 10.8% (10 taxa) respectively. Family classification was the most of compositae of 8 taxa, and life form classification was most of herb of hemicryptophyte species. The classification by using parts were 34 taxa of root use and the classification of efficacy utilization was 24 taxa of Cheongyeolyak (heat-clearing drug) use.

A Deep Learning Model for Disaster Alerts Classification

  • Park, Soonwook;Jun, Hyeyoon;Kim, Yoonsoo;Lee, Soowon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.1-9
    • /
    • 2021
  • Disaster alerts are text messages sent by government to people in the area in the event of a disaster. Since the number of disaster alerts has increased, the number of people who block disaster alerts is increasing as many unnecessary disaster alerts are being received. To solve this problem, this study proposes a deep learning model that automatically classifies disaster alerts by disaster type, and allows only necessary disaster alerts to be received according to the recipient. The proposed model embeds disaster alerts via KoBERT and classifies them by disaster type with LSTM. As a result of classifying disaster alerts using 3 combinations of parts of speech: [Noun], [Noun + Adjective + Verb] and [All parts], and 4 classification models: Proposed model, Keyword classification, Word2Vec + 1D-CNN and KoBERT + FFNN, the proposed model achieved the highest performance with 0.988954 accuracy.