• 제목/요약/키워드: Korean surface temperature

검색결과 12,696건 처리시간 0.044초

투.보수성 시멘트 콘크리트 포장의 열물성 및 수분보유특성이 표면온도에 미치는 영향 (Effects of Thermal Properties and Water Retention Characteristics of Permeable Concrete Pavement on Surface Temperature)

  • 류남형;유병림
    • 한국조경학회지
    • /
    • 제34권1호
    • /
    • pp.21-36
    • /
    • 2006
  • This study was undertaken to analyze the effects of pavement thermal properties and water retention characteristics on the surface temperature of the gray permeable cement concrete pavement during the summer. Following is a summary of major results. 1) The hourly surface temperature of pavement could be well predicted with a heat transfer model program that incorporated the input data of major meteorological variables including solar radiation, atmospheric temperature, dew point, wind velocity, cloudiness and the evaporation rate of the pavements predicted by the time domain reflectometry (TDR) method. 2) When the albedo was changed to 0.5 from an arbitrary starting condition of 0.3, holding other variables constant, the peak surface temperature of the pavement dropped by 11.5%. When heat capacity was changed to $2.5\;kJm^{-3}K^{-1}\;from\;1.5\;kJm^{-3}K^{-1}$, surface temperature dropped by 8.0%. When daily evaporation was changed to 1 mm from 2 mm, temperature dropped by 5.7%. When heat conductivity was changed to $2.5\;Wm^{-1}K^{-1}\;from\;1.5\;Wm^{-1}K^{-1}$, the peak surface temperature of the pavement fell by 1.2%. The peak pavement surface temperature under the arbitrary basic condition was $24.46^{\circ}C$ (12 a.m.). 3) It accordingly became evident that the pavement surface temperature can be most effectively lowered by using materials with a high albedo, a high heat capacity or a high evaporation at the pavement surface. The glare situation, however, is intensified by raising of the albedo, moreover if reflected light is absorbed into surrounding physical masses, it is changed into heat. It accordingly became evident that raising the heat capacity and the evaporative capacity may be the moot acceptable measures to improve the thermal characteristics of the pavement. 4) The sensitivity of the surface temperature to major meteorological variables was as follows. When the daily average temperature changed to $0^{\circ}C\;from\;15^{\circ}C$, holding all other variables constant, the peak surface temperature of the pavement decreased by 56.1 %. When the global solar radiation changed to $200\;Wm^{-2}\;from\;600\;Wm^{-2}$, the temperature of the pavement decreased by 23.4%. When the wind velocity changed to $8\;ms^{-1}\;from\;4\;ms^{-1}$, the temperature decreased by 1.4%. When the cloudiness level changed to 1.0 from 0.5, the peak surface temperature decreased by 0.7%. The peak pavement surface temperature under the arbitrary basic conditions was $24.46^{\circ}C$ (12 a.m.)

결빙구간의 교통사고 심각도 영향 요인 연구 (A Study on Factors that Influence Traffic Accident Severity in Road Surface Freezing)

  • 이상준
    • 한국안전학회지
    • /
    • 제32권6호
    • /
    • pp.150-156
    • /
    • 2017
  • A frozen road surface increases traffic accidents during the winter season. Hence, information on easily-frozen road sections and their specificities are required to prevent traffic accidents. Frozen road surfaces are determined by equipment measuring road surface temperatures. However, there are limitations in investigating the entire road network. Therefore, it is imperative to develop new methods that effectively determine road surface freezing risks. Meteorologically, road surfaces are frozen when the actual temperature cools down to the dew point temperature. Under this condition, there is likely to be frost if relative humidity reaches 100% and frozen road surfaces as the temperature gets lower. Meteorological characteristics give us an alternative to a direct measurement road surface temperature to estimate risks of road surface freezing. Based on the clues, the relationship between severity of traffic accidents and temperature changes is empirically investigated using Paju weather data. The results reveal that as the temperature gets lower and changes in current temperature are relatively small, the severity of traffic accidents become higher. In addition, the same is true when the difference between current temperature and the dew point temperature is relatively small, as it increases possibilities of road surface freezing. Future studies must investigate how current temperature and the dew point temperature affect road surface freezing and thereby establish a time-space scope to estimate possible road surface freezing sections using only weather and road material type data. This would provide invaluable information for predicting and preventing frozen road accidents based on weather patterns.

함침율 및 소성온도가 소나무 간벌재로 제조된 우드세라믹의 표면온도에 미치는 영향 (Effect of Impregnation Ratio and Carbonizing Temperature on Surface Temperature of Woodceramics Made from Thinned Logs of Pinus densiflora S. et. Z.)

  • 오승원;변희섭
    • Journal of the Korean Wood Science and Technology
    • /
    • 제32권4호
    • /
    • pp.1-7
    • /
    • 2004
  • 소나무 간벌재로 톱밥보드를 만든 후 우드세라믹을 제조하여 수지함침율 및 소성온도에 따른 우드세라믹의 표면온도의 변화를 조사하였다. 실리콘러버 히터의 표면온도가 증가함에 따라 우드세라믹의 표면온도도 빠른 속도로 증가하였으며, 히터의 설정표면온도가 70℃ 일때 수지함침율 80% 시편의 표면온도는 53.9 ℃이었으며, 소성온도 1,000℃ 조건으로 제조된 우드세라믹의 표면 온도는 54.2 ℃로 가장 높았다. 히터의 표면온도보다 우드세라믹 표면온도의 하강 속도가 느려 우드세라믹이 오랜 시간 열을 유지하고 있음을 알 수 있었다.

Seasonal Prediction of Korean Surface Temperature in July and February Based on Arctic Sea Ice Reduction

  • Choi, Wookap;Kim, Young-Ah
    • 대기
    • /
    • 제32권4호
    • /
    • pp.297-306
    • /
    • 2022
  • We examined potential seasonal prediction of the Korean surface temperature using the relationships between the Arctic Sea Ice Area (SIA) in autumn and the temperature in the following July and February at 850 hPa in East Asia (EA). The Surface Air Temperature (SAT) over Korea shows a similar relationship to that for EA. Since 2007, reduction of autumn SIA has been followed by warming in Korea in July. The regional distribution shows strong correlations in the southern and eastern coastal areas of Korea. The correlations in the sea surface temperature shows the maximum values in July around the Korean Peninsula, consistent with the coastal regions in which the maximum correlations in the Korean SAT are seen. In February, the response of the SAT to the SIA is the opposite of that for the July temperature. The autumn sea ice reduction is followed by cooling over Korea in February, although the magnitude is small. Cooling in the Korean Peninsula in February may be related to planetary wave-like features. Examining the autumn Arctic sea ice variation would be helpful for seasonal prediction of the Korean surface temperature, mostly in July and somewhat in February. Particularly in July, the regression line would be useful as supplementary information for seasonal temperature prediction.

Spur Gear의 표면온도상승에 관한 연구 Part I - Flash Temperature (A Study on the Surface Temperature Rise in Spur Gear Part I - Flash Temperature)

  • 김희진;문석만;김태완;구영필;조용주
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제31회 춘계학술대회
    • /
    • pp.251-257
    • /
    • 2000
  • A numerical simulation of the temperature rise for sliding surface in dry contact is based on Jaeger's formula combined with a calculated heat input. A gear tooth temperature analysis was performed. The pressure distribution has the Hertzian pressure distribution on the heat source. The heat partition factor is calculated along line of action. A Temperature distribution of tooth surface is calculated about before and after profile modification. A Temperature of addendum and deddendum in modified gear have reduced.

  • PDF

머시닝센터를 이용한 평면 연삭가공에 관한 연구 (II) (A Study on the Surface Grinding using the Machining Center (II))

  • 이승만;최환;이종찬;정선환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.880-883
    • /
    • 2000
  • Temperature generated in the workpiece during grinding process can cause thermal damages. Therefore it is important to understand surface temperature generated during grinding process. In this paper, a theoretical and experimental investigation were performed for the grinding temperature. Grinding experiments were performed in machining center using vitrified bonded CBN cup-type wheel. The surface temperature was measured using thermocouple and calculated through a model of the partition of energy between wheel and workpiece. The residual stress and hardness of ground surface were measured. The experimental results indicate that the surface temperature was in good agreement with theoretical ones. Residual stress and hardness of ground surface were more affected by the change of table speed than the depth of cut.

  • PDF

MONITORING OF LAND SURFACE TEMPERATURE CHANGE OF THE NORTHEAST REGION IN CHINA BY MODIS DATA

  • SHAO, Ming;Park, Jong-Geol;YASUDA, Yoshizumi
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.927-929
    • /
    • 2003
  • Using received northeast region in China of Terra/MODIS data at Tokyo University of information Sciences. Make monthly division Land Surface Temperature maximum composite image. Using monthly division Land Surface Temperature maximum composite image, considered characteristic of monthly variation of Land surface temperature and relation with land covering and NDVI at the northeast region in China.

  • PDF

노면온도 변화 패턴의 신뢰성 검증 및 노면온도에 근거한 도로구간 분할 방법 연구 (Reliability of Change Patterns of Road Surface Temperature and Road Segmentation based on Road Surface Temperature)

  • 양충헌;윤천주;김진국;박재홍;윤덕근
    • 한국도로학회논문집
    • /
    • 제18권4호
    • /
    • pp.1-8
    • /
    • 2016
  • PURPOSES : This study evaluates the reliability of the patterns of changes in the road surface temperature during winter using a statistical technique. In addition, a flexible road segmentation method is developed based on the collected road surface temperature data. METHODS : To collect and analyze the data, a thermal mapping system that could be attached to a survey vehicle along with various other sensors was employed. We first selected the test route based on the date and the weather and topographical conditions, since these factors affect the patterns of changes in the road surface temperature. Each route was surveyed a total of 10 times on a round-trip basis at the same times (5 AM to 6 AM). A correlation analysis was performed to identify whether the weather conditions reported for the survey dates were consistent with the actual conditions. In addition, we developed a method for dividing the road into sections based on the consecutive changes in the road surface temperature for use in future applications. Specifically, in this method, the road surface temperature data collected using the thermal mapping system was compared continuously with the average values for the various road sections, and the road was divided into sections based on the temperature. RESULTS : The results showed that the comparison of the reported and actual weather conditions and the standard deviation in the observed road surface temperatures could produce a good indicator of the reliability of the patterns of the changes in the road surface temperature. CONCLUSIONS : This research shows how road surface temperature data can be evaluated using a statistical technique. It also confirms that roads should be segmented based on the changes in the temperature and not using a uniform segmentation method.

도시 토지피복별 불투수면적률과 녹지면적률에 따른 지표면 일최고온도 변화량 산정방법 (Development of calculating daily maximum ground surface temperature depending on fluctuations of impermeable and green area ratio by urban land cover types)

  • 김영란;황성환
    • 상하수도학회지
    • /
    • 제35권2호
    • /
    • pp.163-174
    • /
    • 2021
  • Heatwaves are one of the most common phenomena originating from changes in the urban thermal environment. They are caused mainly by the evapotranspiration decrease of surface impermeable areas from increases in temperature and reflected heat, leading to a dry urban environment that can deteriorate aspects of everyday life. This study aimed to calculate daily maximum ground surface temperature affecting heatwaves, to quantify the effects of urban thermal environment control through water cycle restoration while validating its feasibility. The maximum surface temperature regression equation according to the impermeable area ratios of urban land cover types was derived. The estimated values from daily maximum ground surface temperature regression equation were compared with actual measured values to validate the calculation method's feasibility. The land cover classification and derivation of specific parameters were conducted by classifying land cover into buildings, roads, rivers, and lands. Detailed parameters were classified by the river area ratio, land impermeable area ratio, and green area ratio of each land-cover type, with the exception of the rivers, to derive the maximum surface temperature regression equation of each land cover type. The regression equation feasibility assessment showed that the estimated maximum surface temperature values were within the level of significance. The maximum surface temperature decreased by 0.0450℃ when the green area ratio increased by 1% and increased by 0.0321℃ when the impermeable area ratio increased by 1%. It was determined that the surface reduction effect through increases in the green area ratio was 29% higher than the increasing effect of surface temperature due to the impermeable land ratio.

AISI 316L stainless steel에 저온 플라즈마 침탄처리 후 질화처리 시 처리시간과 온도가 표면특성에 미치는 영향 (Effects of Processing Time and Temperature on the Surface Properties of AISI 316L Stainless steel During Low Temperature Plasma Nitriding After Low Temperature Plasma Carburizing)

  • 이인섭
    • 대한금속재료학회지
    • /
    • 제46권6호
    • /
    • pp.357-362
    • /
    • 2008
  • The 2-step low temperature plasma processes (the combined carburizing and post-nitriding) were carried out for improving both the surface hardness and corrosion resistance of AISI 316L stainless steel. The effects of processing time and temperature on the surface properties during nitriding step were investigated. The expanded austenite (${\gamma}_N$) was formed on all of the treated surface. The thickness of ${\gamma}_N$ was increased up to about $20{\mu}m$ and the thickness of entire hardened layer was determined to be about $40{\mu}m$. The surface hardness reached up to $1,200HV_{0.1}$ which is about 5 times higher than that of untreated sample ($250HV_{0.1}$). The thickness of ${\gamma}_N$ and concentration of N on the surface were increased with increasing processing time and temperature. The corrosion resistance in 2-step low temperature plasma processed austenitic stainless steels was enhanced more than that in the untreated austenitic stainless steels due to a high concentration of N on the surface.