• 제목/요약/키워드: Korean stream flow regime

검색결과 27건 처리시간 0.021초

천이영역의 희박기체 압축성 경계층 해석 (Analysis of rarefied compressible boundary layers in transition regime)

  • 최서원
    • 대한기계학회논문집B
    • /
    • 제21권4호
    • /
    • pp.509-517
    • /
    • 1997
  • Results of flat plate compressible boundary layer calculation, based on discrete formulation of DSMC method, are presented in low Mach number and low Knudsen number range. The free stream is a uniform flow of pure nitrogen at various Mach numbers in low pressures (i.e. rarefied gas). Complete thermal accommodation and diffuse molecular reflections are used as the wall boundary condition, replacing unreal no-slip condition used in continuum calculations. In the discrete formulation of DSMC method, there is no need to use ad hoc assumptions on transport properties like viscosity and thermal conductivity, instead viscosity is calculated from values of other field variables (velocity and shear stress). Also the results are compared with existing self-similar continuum solutions. In all Mach number cases computed, velocity slip is most pronounced in regions near the leading edge where continuum formulation renders the solution singular. As the boundary layer develops further downstream, velocity slips asymptote to values that are between 10 to 20% of the magnitude of free stream velocity. When the free stream number density is reduced, so the gas more rarefied, the velocity slip increases as expected.

자유류 난류와 표면 트립 와이어가 구 주위 유동에 미치는 영향 (Effects of the Free-Stream Turbulence and Surface Trip Wire on the Flow past a Sphere)

  • 손광민;최진;전우평;최해천
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.187-190
    • /
    • 2006
  • In the present study, effects of tree-stream turbulence and surface trip wire on the flow past a sphere at $Re\;=\;0.4\;{\times}\;10^5\;{\sim}\;2.8\;{\times}\;10^5$ are investigated through wind tunnel experiments. Various types of grids are installed upstream of the sphere in order to change the tree-stream turbulence intensity. In the case of surface trip wire, 0.5mm and 2mm trip wires are attached from $20^{\circ}\;{\sim}\;90^{\circ}$ at $10^{\circ}$ interval along the streamwise direction. To investigate the flow around a sphere, drag measurement using a load cell, surface-pressure measurement, surface visualization using oil-flow pattern and near-wall velocity measurement using an I-type hot-wire probe are conducted. In the variation of free-stream turbulence, the critical Reynolds number decreases and drag crisis occurs earlier with increasing turbulence intensity. With increasing Reynolds number, the laminar separation point moves downstream, but the reattachment point after laminar separation and the main separation point are fixed, resulting in constant drag coefficient at each free-stream turbulence intensity. At the supercritical regime, as Reynolds number is further increased, the separation bubble is regressed but the reattachment and the main separation points are fixed. In the case of surface trip wire directly disturbing the boundary layer flow, the critical Reynolds number decreases further with trip wire located more downstream. However, the drag coefficient after drag crisis remains constant irrespective of the trip location.

  • PDF

난류 비예혼합 평면화염의 유동과 연소 특성 (The Characteristics of the Flow and Combustion in a Turbulent Non-Premixed Flat Flame)

  • 곽지현;정용기;전충환;장영준
    • 대한기계학회논문집B
    • /
    • 제27권4호
    • /
    • pp.447-457
    • /
    • 2003
  • An experiment in a turbulent non-premixed flat flame was carried out in order to investigate the effect of swirl number on the flow and combustion characteristics. First. stream lines and velocity distribution in the flow field were obtained using PIV method. In contrast with the axial flow without swirl, highly swirled air induced stream lines along the burner tile. and backward flow was caused by recirculation in the center zone of the flow field. In the combustion. the flame with swirled air also became flat and stable along the burner tile with increment of the swirl number. Flame structure by measuring OH and CH radicals intensity and by calculating Damkohler number(Da) and turbulence Reynolds number(Re$_{T}$) was examined. It appeared to be comprised in the wrinkled laminar-flame regime. Backward flow by recirculation of the burned gas decreased the flame temperature and emissions concentrations as NO and CO. Consequently, the stable flat flame with low NO concentration was achieved.d.

하상계수가 큰 하천의 하도형성유량 산정 (Channel-forming Discharge Evaluation for Rivers with High Coefficients of River Regime)

  • 지운;장은경;여운광
    • 대한토목학회논문집
    • /
    • 제31권4B호
    • /
    • pp.361-367
    • /
    • 2011
  • 하천 정비 및 하천 복업사업의 기준유량이 되는 하도형성유량 산정은 안정하도 설계시 반드시 선행되어야 하는 것이다. 국내의 경우 하도형성유량 산정방법에 대한 연구가 많이 수행되지 않아 특정패턴을 도출하기가 어려운 실정이다. 국내하천의 경우 외국의 주요하천과 비교하여 하상계수가 크게 나타나는 특성으로 인해 외국사례를 국내에 적용하기에 어려움이 있다. 따라서 현재 구하도 복원이 진행 되고 있거나 계획되어 있는 만경강, 청미천, 함평천을 대상으로 하도형성유량 산정을 위해 만제유량, 특정 재현기간별 유량, 유효유량을 산정해보고 각각의 상호관계를 분석하여 하상계수가 큰 국내하천에 적용 가능한 하도형성유량을 제안하고자 한다. 만제유량은 대상유역의 지형자료를 이용한 HEC-RAS 모의를 통해 산정하였으며 특정 재현기간별 유량과 유효유량은 대상구간의 유량, 하상토, 유사 자료를 이용하여 산정하였다. 산정결과 하상계수가 큰 하천에서는 유효유량이 만제유량보다 크게 나타났으며 하상계수와 관련하여 특정 재현기간별 유량은 일관성 있는 특징이 없는 것으로 나타났다.

하천식생 이입 현상에 대한 수문현상 변화와 영양염류 영향의 예비 검증 (A Preliminary Verification of the Influences of Hydrologic Regime Change and Nutrients Influx on Vegetation Recruitment on Riparian Bars)

  • 우효섭;강준구;조형진;최이송;박문형
    • Ecology and Resilient Infrastructure
    • /
    • 제2권4호
    • /
    • pp.284-290
    • /
    • 2015
  • 본 연구는 비 조절하천에서 식생 이입 및 활착 현상에 대해 봄철 강수특성 변화에 따른 식생영향 가설과 질소화합물의 하천유입에 따른 식생영향 가설을 일차적으로 검증하는 것이다. 첫 번째 가설을 검증하기 위해 국내하천에 대해 갈대와 달뿌리풀의 발아기, 유식물기인 3-5월의 강우특성 변화를 분석하였다. 그 결과 최근 35년 동안 연 총 강수량은 약 15% 늘어난 반면에 3-5월의 강수량은 오히려 약 15% 이상 감소한 것으로 나타나서 이러한 가설을 부분적으로 뒷받침하였다. 두 번째 가설을 검증하기 위해 한 쌍의 실험수로에 갈대를 식재 하고 여름 기간 동안 갈대성장을 관찰한 결과 질소화합물이 3.5 mg/L 정도 함유된 오염수를 주기적으로 흘린 수로의 경우 그렇지 않은 경우보다 약 30% 이상 갈대성장이 높은 것을 확인하였다. 비록 강우량 분석 결과와 식생수로 실험결과는 제한된 범위 내에서 수행된 것이지만 국내 비 조절 중소하천의 초본류 번무현상을 일부 설명할 수 있을 것이다.

섭동법을 이용한 만곡 리뷸릿에 관한 이론적 연구 (Perturbation Analysis of a Meandering Rivulet)

  • 김진호;김호영;강병하;이재헌
    • 설비공학논문집
    • /
    • 제13권12호
    • /
    • pp.1196-1204
    • /
    • 2001
  • The rivulet is a narrow stream of liquid flowing down a solid surface. When the rivulet\`s flow rate exceeds a certain limit, it tends to meander exhibiting the instability of its interface. This analysis performs a perturbation analysis of this meandering rivulet assuming an inviscid flow possessing contact angle hysteresis at the contact line. The analysis reveals that the contact angle hysteresis as well as the velocity difference across the inter-face, strongly induces the instability of the liquid interface. Moreover, when the rivulet veto-city is low, it is predicted that the axisymmetric disturbance amplifies more rapidly than the anti-axisymmetric disturbance, which explains the emergence of the droplet flow at the low velocity regime.

  • PDF

다중블럭계산에 의한 분사기 오리피스 유동특성 해석 (Numerical study on the characteristics of the flow through injector orifice by multi-block computations)

  • 김영목
    • 대한기계학회논문집B
    • /
    • 제21권3호
    • /
    • pp.414-426
    • /
    • 1997
  • Numerical computations were conducted to characterize the three-dimensional laminar flow through an injector orifice having an inclined angle of 30 .deg.. For this study, the incompressible Navier-Stokes equations in generalized curvilinear coordinates, using a pseudocompressibility approach for continuity equation, were solved. The computations were performed using the finite difference implicit, approximately factored scheme of Beam and Warming and multi-block grids of complete continuity at block interfaces. The multi-block computations were validated for the steady state using direct comparison of multi-block solutions with equivalent single-block ones, including 2-D 180.deg. TAD and 3-D 90.deg. pipe bend. The comparisons between the numerical solutions and the flow field measurements for a tube with sudden contraction were presented in this work for solution validation. Computational results showed the nature of complex flow fields within the inclined injector orifice, including strong pressure-driven secondary flows in the cross stream induced by the effect of streamline curvature. In addition, asymmetric secondary flows were induced in the Reynolds number range above assumed laminar flow regime considered. However, turbulence calculations and grid dependency studies are needed for more accurate computations.

하천정비에 의한 하천의 물리적 교란 평가 - 남강과 영천강을 대상으로 - (Assessment of Physical Stream Disturbances by River Improvement - Case Studies of Nam River and Youngcheon River -)

  • 김기흥
    • 한국환경복원기술학회지
    • /
    • 제12권3호
    • /
    • pp.83-97
    • /
    • 2009
  • The objects of study is to propose criteria for physical river disturbance assessment and as case study to show the application results for river improvement. For this purpose, the river disturbance assessment method for past disturbance process and the present-day potential natural state of stream is proposed. To assess the disturbance of the Youngcheon River caused by river improvement, One ares of Nam River was selected for the reference reach and two areas of Youngcheon River were selected for the comparison reach. And these reaches were surveyed and analyzed according to applying criteria of the river disturbances assessment. The assessment indices were physical factors as like epifaunal (bottom), embededness, velocity/depth regime, sediment deposition, channel flow status, channel alteration, frequency of riffles, bank stability, vegetative protection and riparian zone etc. The results showed that physical river environment in Youngcheon River area was disturbed by artificial revetment and bed excavation, consequently this disturbance give rise to impact of ecosystem in river. Hereafter, the criteria for river disturbance assessment are needed to consider various river characters as bed materials and bed slop etc.

Mitigation of Ammonia Dispersion with Mesh Barrier under Various Atmospheric Stability Conditions

  • Gerdroodbary, M. Barzegar;Mokhtari, Mojtaba;Bishehsari, Shervin;Fallah, Keivan
    • Asian Journal of Atmospheric Environment
    • /
    • 제10권3호
    • /
    • pp.125-136
    • /
    • 2016
  • In this study, the effects of the mesh barrier on the free dispersion of ammonia were numerically investigated under different atmospheric conditions. This study presents the detail and flow feature of the dispersion of ammonia through the mesh barrier on various free stream conditions to decline and limit the toxic danger of the ammonia. It is assumed that the dispersion of the ammonia occurred through the leakage in the pipeline. Parametric studies were conducted on the performance of the mesh barrier by using the Reynolds-averaged Navier-Stokes equations with realizable k-${\varepsilon}$ turbulence model. Numerical simulations of ammonia dispersion in the presence of mesh barrier revealed significant results in a fully turbulent free stream condition. The results clearly show that the flow behavior was found to be a direct result of mesh size and ammonia dispersion is highly influenced by these changes in flow patterns in downstream. In fact, the flow regime becomes laminar as flow passes through mesh barrier. According to the results, the mesh barrier decreased the maximum concentration of the ammonia gas and limited the risk zone (more than 500 ppm) lower than 2 m height. Furthermore, a significant reduction occurs in the slope of the upper boundary of $NH_3$ risk zone distribution at downstream when a mesh barrier is presented. Thus, this device highly restricts the leak distribution of ammonia in the industrial plan.

Gasdynamic Adjustment at Modeling of Flight Conditions Appropriate M=6

  • 우관제
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2000년도 제14회 학술강연논문집
    • /
    • pp.8-8
    • /
    • 2000
  • In this paper are presented main power and gasdynamic characteristics of C-l6VK hypersonic test cell of Research Test Center of CIAM. Gasdynamic adjustment of the C-l6VK test cell was carried out with the working section constructed on scheme of Ramjet/scramjet test in free stream. Gasdynamic adjustment was conducted stage by stage in tile following sequence. First, check and preparation of all technical systems and checking measuring system. Than determination of the characteristics of test cell on cold (without the heating of air at entrance) regime and determination of the characteristics of test cell on regimes with the heating of air. Finally determination of tile characteristics of test cell with the loading of the working part by object. On tile final stage of gasdynamic adjustment two experiments with tile axisymmetric Scramjet model loaded into the working part of test cell were conducted. The first experiment was conducted with the purpose of determination of flow parameters with the object leaded into the working part and verification of experiment cyclogram. The second experiment was conducted with injection of hydrogen into the combustion chamber of object, that is tile conditions on test cell simulated Scramjet flight Mach number M = 6. Such methodology of gasdynamic adjustment allows to determine influence of experimental object on flow parameters in the working part at different conditions of experiment (with the burning in combustion chamber of object and without the homing), and also to compare flow characteristics in the object duct.

  • PDF