• Title/Summary/Keyword: Korean sky map

Search Result 53, Processing Time 0.033 seconds

Chemical and Kinematic Properties of the Galactic Halo System

  • Jung, Jaehun;Lee, Young Sun;Kim, Young Kwang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.80.2-80.2
    • /
    • 2017
  • We present chemical and kinematic properties of the Milky Way's halo system investigated by carbon-enhanced metal-poor (CEMP) stars identified from the Sloan Digital Sky Survey. We first map out fractions of CEMP-no stars (those having no over-abundances of neutron-capture elements) and CEMP-s stars (those with over-enhancements of the s-process elements) in the inner- and outer-halo populations, separated by their spatial distribution of carbonicity ([C/Fe]). Among CEMP stars, the CEMP-no and CEMP-s objects are classified by different levels of absolute carbon abundances, A(C). We investigate characteristics of rotation velocity and orbital eccentric for these subclasses for each halo population. Any distinct kinematic features identified between the two categories in each halo region provide important clues on the origin of the dichotomy of the Galactic halo.

  • PDF

Dichotomy of the Galactic Halo as Revealed by Carbon-Enhanced Metal-Poor Giants

  • Jung, Jaehun;Lee, Young Sun;Kim, Young Kwang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.66.3-67
    • /
    • 2018
  • We present distinct chemical and kinematic properties associated with the inner and outer halos of the Milky Way, as identified by metal-poor stars from the Sloan Digital Sky Survey. In particular, using carbon-enhance metal-poor (CEMP) giants, we first map out the fractions of CEMP-no stars (without strongly enhanced neutron-capture elements) and CEMP-s stars (with a large enhancement of s-process elements) in the inner- and outer-halo populations, separated by their spatial distribution of carbonicity ([C/Fe]). The CEMP-no and CEMP-s objects are classified by their different levels of absolute carbon abundances, A(C). We investigate characteristics of rotational velocity and orbital eccentricity for these sub-classes within the halo populations. Distinct kinematic features and fractions between CEMP-no and CEMP-s stars identified in each halo region will provide important clues on the origin of the dichotomy of the Galactic halo.

  • PDF

Cosmic Web traced by ELGs and LRGs from the Multidark Simulation

  • Kim, Doyle;Rossi, Graziano
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.72.1-72.1
    • /
    • 2016
  • Current and planned large-volume surveys such as the Sloan Digital Sky Survey extended Baryon Oscillation Spectroscopic Survey (SDSS IV-eBOSS) or the Dark Energy Spectroscopic Instrument (DESI) will use Luminous Red Galaxies (LRGs) and Emission Line Galaxies (ELGs) to map the cosmic web up to z~1.7, and will allow one to accurately constrain cosmological models and obtain crucial information on the nature of dark energy and the expansion history of the Universe in novel epochs - particularly by measuring the Baryon Acoustic Oscillation (BAO) feature with improved accuracy. To this end, we present here a study of the spatial distribution and clustering of a sample of LRGs and ELGs obtained from a sub-volume of the MultiDark simulation complemented by different semi-analytic prescriptions, and investigate how these two different populations trace the cosmic web at different redshift intervals - along with their synergy. This is the first step towards the interpretation of upcoming ELG and LRG data.

  • PDF

Asymmetric Mean Metallicity Distribution of the Milky Way's Disk

  • An, Deokkeun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.49.1-49.1
    • /
    • 2019
  • I present the mean metallicity distribution of stars in the Milky Way based on photometry from the Sloan Digital Sky Survey. I utilize an empirically calibrated set of stellar isochrones developed in previous work to estimate the metallicities of individual stars to a precision of 0.2 dex for reasonably bright stars across the survey area. I also obtain more precise metallicity estimates using priors from the Gaia parallaxes for relatively nearby stars. Close to the Galactic mid-plane (|Z| < 2 kpc), a mean metallicity map reveals deviations from the mirror symmetry between the northern and southern hemispheres, displaying wave-like oscillations. The observed metallicity asymmetry structure is almost parallel to the Galactic mid-plane, and coincides with the previously known asymmetry in the stellar number density distribution. This result reinforces the previous notion of the plane-parallel vertical waves propagating through the disk, which have been excited by a massive halo substructure such as the Sagittarius dwarf galaxy plunging through the Milky Way's disk. This work provides evidence that the Gaia phase-space spiral may continue out to |Z| ~ 1.5 kpc.

  • PDF

Probing the Early Phase of Reionization through LiteBIRD

  • Ahn, Kyungjin;Sakamoto, Hina;Ichiki, Kiyotomo;Moon, Hyunjin;Hasegawa, Kenji
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.72.2-72.2
    • /
    • 2021
  • Cosmic reionization imprints its history on the sky map of the cosmic microwave background (CMB) polarization. Even though mild, the signature of the reionization history during its early phase (z>15) can also impact the CMB polarization. We forecast the observational capability of the LiteBIRD(Lite(Light) satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection), a truly cosmic-variance limited apparatus. We focus on the capability for such an apparatus to probe the partial optical depth of the CMB photons during z>15. We show that LiteBIRD is able to probe this quantity with a modest to high significance, enabling one to tell how efficient the cosmic reionization and star formation were at z>15.

  • PDF

GENERATION OF FOREST FRACTION MAP WITH MODIS IMAGES USING ENDMEMBER EXTRACTED FROM HIGH RESOLUTION IMAGE

  • Kim, Tae-Geun;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.468-470
    • /
    • 2007
  • This paper is to present an approach for generating coarse resolution (MODIS data) fraction images of forested region in Korea peninsula using forest type area fraction derived from high resolution data (ASTER data) in regional forest area. A 15-m spatial resolution multi-spectral ASTER image was acquired under clear sky conditions on September 22, 2003 over the forested area near Seoul, Korea and was used to select each end-member that represent a pure reflectance of component of forest such as different forest, bare soil and water. The area fraction of selected each end-member and a 500-m spatial resolution MODIS reflectance product covering study area was applied to a linear mixture inversion model for calculating the fraction image of forest component across the South Korea. We found that the area fraction values of each end-member observed from high resolution image data could be used to separate forest cover in low resolution image data.

  • PDF

AEROSOL OPTICAL THICKNESS ESTIMATED FROM LANDSAT/ETM+IMAGE DATA

  • Kawata, Yoshiyuki;Fukul, Haruki;Takemata, Kazuya
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.378-381
    • /
    • 2002
  • We retrieved the aerosol optical thickness $\tau$$_{a}$ over land from Landsat-7/ETM+ image data using the correlation between the visible reflectance and middle IR reflectance. This band correlation method for aerosol retrieval was originally proposed fur MODIS data analysis by Kaufman et al.(1977). The results of retrieved aerosol optical thickness $\tau$$_{a}$ from Landsat-7/ETM+ data were compared with the simultaneous sky observation data at our study site. We found a good agreement between the retrieved and observed values. We presented the distribution maps of the aerosol optical thickness over land, retrieved from Landsat-7/ETM+ image data. Then, the surface reflectance map was also presented. The aerosol optical thickness over sea was retrieved assuming no reflected contribution from sea in the near IR band. In addition, we discussed some limitations when we apply the band correlation method.

  • PDF

FAR-IR GALACTIC EMISSION MAP AND COSMIC OPTICAL BACKGROUND

  • Matsuoka, Y.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.353-356
    • /
    • 2012
  • We present new constraints on the cosmic optical background (COB) obtained from an analysis of the Pioneer 10/11 Imaging Photopolarimeter (IPP) data. After careful examination of the data quality, the usable measurements free from the zodiacal light are integrated into sky maps at the blue (${\sim}0.44{\mu}m$) and red (${\sim}0.64{\mu}m$) bands. Accurate starlight subtraction was achieved by referring to all-sky star catalogs and a Galactic stellar population synthesis model down to 32.0 mag. We find that the residual light is separated into two components: one component shows a clear correlation with the thermal $100{\mu}m$ brightness, whilst the other shows a constant level in the lowest $100{\mu}m$ brightness region. The presence of the second component is significant after all the uncertainties and possible residual light in the Galaxy are taken into account, thus it most likely has an extragalactic origin (i.e., the COB). The derived COB brightness is ($(1.8{\pm}0.9){\times}10^{-9}$ and $(1.2{\pm}0.9){\times}10^{-9}\;erg\;s^{-1}\;cm^{-2}\;sr^{-1}\;{\AA}^{-1}$ in the blue and red spectral regions, respectively, or $7.9{\pm}4.0$ and $7.7{\pm}5.8\;nW\;m^{-2}\;sr^{-1}$. Based on a comparison with the integrated brightness of galaxies, we conclude that the bulk of the COB is comprised of normal galaxies which have already been resolved by the current deepest observations. There seems to be little room for contributions from other populations including "first stars" at these wavelengths. On the other hand, the first component of the IPP residual light represents the diffuse Galactic light (DGL)-scattered starlight by the interstellar dust. We derive the mean DGL-to-$100{\mu}m$ brightness ratios of $2.1{\times}10^{-3}$ and $4.6{\times}10^{-3}$ at the two bands, which are roughly consistent with previous observations toward denser dust regions. Extended red emission in the diffuse interstellar medium is also confirmed.

GALAXY FORMATION IN THE HUBBLE DEEP FIELD

  • PARK CHANGBOM;KIM JU HAN
    • Journal of The Korean Astronomical Society
    • /
    • v.30 no.1
    • /
    • pp.83-94
    • /
    • 1997
  • We have identified the candidates for the primordial galaxies in the process of formation in the Hubble Deep Field (hereafter HDF). In order to select these objects we have removed objects brighter than 29-th magnitude in the HDF images and smoothed the maps with the Gaussian filters with the FWHM of 0.8' and 4' to obtain the difference maps. This has enabled us to find. very faint diffuse structures close to the sky level. Peaks are identified in the difference map for each of three HDF chips with three filters (F450W, F606W, and F814W). They have the apparent AB magnitudes typically between 29 and 31. The objects identified in different wavelengths filters have a strong cross-correlations. The correlation lengths are about 0.8'. This means that an object found in one filter can be also found as a peak within 0.8' separation in another filter, thus telling the reality of the identified objects. This angular scale is also the size of the primordial galaxies which have strong color fluctuations on their surfaces. Their large-scale distribution quite resembles that of nearby galaxies, supporting the idea that these objects are ancestors of the present bright galaxies forming at statistically high density regions. Inspections on individual objects show that these primordial galaxy candidates have tiny multiple glares embedded in diffuse backgrounds. Their radial light distributions are quite different from that of nearby bright galaxies. We may be now looking at the epoch of galaxy formation.

  • PDF

Evidence of Stellar Substructures on the Near-infrared Image of M31 System

  • Kang, Minhee;Chun, Sang-Hyun;Sohn, Young-Jong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.41.2-41.2
    • /
    • 2014
  • Hierarchical merging scenario indicates that galaxies go through major and minor merger events during their formation and evolution. As a result of the merging, substructural features of remnants such as stellar stream are shown around a current galaxy system. To find evidence of stellar substructures on M31 system, we used the near-infrared images of JHK filters obtained from the Wide Field Camera (WFCAM) at UKIRT 3.8m. A total sky coverage is an area of about$ 4.5^{\circ}{\times}6^{\circ}$ around M31. Indeed, M31 system which consists of several satellite systems contains stellar substructures such as giant stellar stream, loops, and spurs. By analysing stellar populations on the near-infrared color-magnitude diagrams, we selected member star candidates of each stellar substructure, from which we map out spatial distribution of stars in the vicinity of M31 system. Here, we present spatial density distribution maps of stars on each substructure over the entire field of M31 system. Also, we discuss the possible origin of the substructures and the implications on the galaxy assembly process.

  • PDF