• Title/Summary/Keyword: Korean residual soil

Search Result 600, Processing Time 0.024 seconds

Behaviors of Soft Bangkok Clay behind Diaphragm Wall Under Unloading Compression Triaxial Test (삼축압축 하에서 지중연속벽 주변 방콕 연약 점토의 거동)

  • Le, Nghia Trong;Teparaksa, Wanchai;Mitachi, Toshiyuki;Kawaguchi, Takayuki
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.9
    • /
    • pp.5-16
    • /
    • 2007
  • The simple linear elastic-perfectly plastic model with soil parameters $s_u,\;E_u$ and n of undrained condition is usually applied to predict the displacement of a constructed diaphragm wall(DW) on soft soils during excavation. However, the application of this soil model for finite element analysis could not interpret the continued increment of the lateral displacement of the DW for the large and deep excavation area both during the elapsed time without activity of excavation and after finishing excavation. To study the characteristic behaviors of soil behind the DW during the periods without excavation, a series of tests on soft Bangkok clay samples are simulated in the same manner as stress condition of soil elements happening behind diaphragm wall by triaxial tests. Three kinds of triaxial tests are carried out in this research: $K_0$ consolidated undrained compression($CK_0U_C$) and $K_0$ consolidated drained/undrained unloading compression with periodic decrement of horizontal pressure($CK_0DUC$ and $CK_0UUC$). The study shows that the shear strength of series $CK_0DUC$ tests is equal to the residual strength of $CK_0UC$ tests. The Young's modulus determined at each decrement step of the horizontal pressure of soil specimen on $CK_0DUC$ tests decreases with increase in the deviator stress. In addition, the slope of Critical State Line of both $CK_0UC$ and $CK_0DUC$ tests is equal. Moreover, the axial and radial strain rates of each decrement of horizontal pressure step of $CK_0DUC$ tests are established with the function of time, a slope of critical state line and a ratio of deviator and mean effective stress. This study shows that the results of the unloading compression triaxial tests can be used to predict the diaphragm wall deflection during excavation.

Stabilization of As Contaminated Soils using a Combination of Hydrated Lime, Portland Cement, FeCl3·6H2O and NaOH (소석회, 포틀랜드 시멘트, FeCl3·6H2O, NaOH를 이용한 비소 오염토양의 안정화)

  • Moon, Deok-Hyun;Oh, Da-Yeon;Lee, Seung-Je;Park, Jeong-Hun
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.1
    • /
    • pp.47-53
    • /
    • 2010
  • The purpose of this study was to investigate the effectiveness of a stabilization treatment for As contaminated soil. A combination of hydrated lime, Portland cement, $FeCl_3{\cdot}6H_2O$, and NaOH were used as stabilizing agents. The effectiveness of stabilization treatment was evaluated by the Korean Standard Test (KST) method (1N HCl extraction). Sequential extractions were performed to investigate the As distribution after treatment. Following the application of the treatment, curing periods of up to 7 and 28days were investigated. The experimental results showed that a combination of hydrated lime/Portland cement was more effective than treatments of hydrated lime or Portland cement at immobilizing As in the contaminated soil. The treatment of 25wt% hydrated lime and 5wt% Portland cement was effective in reducing As leachability less than the Korean warning standard of 20 mg/kg. However, the treatments of hydrated lime and Portland cement failed to meet the Korean warning standard even when up to 30 wt% was used. The treatment utilizing hydrated lime and $FeCl_3{\cdot}6H_2O$ was not effective in properly reducing As leachability. The addition of $FeCl_3{\cdot}6H_2O$ was negative in terms of pH condition. Moreover, the treatment with hydrated lime/NaOH was effective in reducing As leachability but not as much as hydrated lime/Portland cement. The sequential extraction results indicated that the residual phase was greatly increased upon the treatment of hydrated lime/Portland cement. It was concluded that the hydrated lime/Portland cement treatment was the best among the other combinations studied at achieving trace As concentrations.

Effects of Soil Temperature on Biodegradation Rate of Diesel Compounds from a Field Pilot Test Using Hot Air Injection Process (고온공기주입 공법 적용시 지중온도가 생분해속도에 미치는 영향)

  • Park Gi-Ho;Shin Hang-Sik;Park Min-Ho;Hong Seung-Mo;Ko Seok-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.45-53
    • /
    • 2005
  • The objective of this study is to evaluate the effects of changes in soil temperature on biodegradation rate of diesel compounds from a field pilot test using hot air injection process. Total remediation time was estimated from in-situ biodegradation rate and temperature for optimum biodegradation. All tests were conducted by measuring in-situ respiration rates every about 10 days on highly contaminated area where an accidental diesel release occurred. The applied remediation methods were hot air injection/extraction process to volatilize and extract diesel compounds followed by a bioremediation process to degrade residual diesels in soils. Oxygen consumption rate varied from 2.2 to 46.3%/day in the range of 26 to $60^{\circ}C$, and maximum $O_2$ consumption rate was observed at $32.0^{\circ}C$. Zero-order biodegradation rate estimated on the basis of oxygen consumption rates varied from 6.5 to 21.3 mg/kg-day, and the maximum biodegradation rate was observed at $32^{\circ}C$ as well. In other temperature range, the values were in the decreasing trend. The first-order kinetic constants (k) estimated from in-situ respiration rates measured periodically were 0.0027, 0.0013, and $0.0006d^{-1}$ at 32.8, 41.1, and $52.7^{\circ}C$, respectively. The estimated remediation time was from 2 to 9 years, provided that final TPH concentration in soils was set to 870 mg/kg.

Degradation and Residue of Fujione and Ortran in Korean Rice Paddy System (수도용 농약후치왕, 오트란의 작물 및 토양에서의 잔류와 분해)

  • Baik, Ok-Ryun;Roh, Jung-Koo;Kim, Taik-Je
    • Applied Biological Chemistry
    • /
    • v.25 no.2
    • /
    • pp.93-98
    • /
    • 1982
  • Residues of Fujione (Fudiolan, fungicide) and Ortran (Acephate, insecticide) in Korean rice crop were studied. Also the persistencies of the pesticides in rice paddy soil were investigated in field and in laboratory. The residual levels of the pesticides in rice plant, straw, unpolished and polished rice were varied with the application rates of the pesticides. The residues of Fujione and Ortran in unpolished rice were $0.07{\sim}0.09ppm$ and $0.01{\sim}0.53ppm$, respectively. The half life of Fujione was 30 days under aerobic and 150 days under flooded condition in the laboratory system. Whereas in the paddy field it was about 100 days. In the case of Ortran it was $3{\sim}4$ days and $13{\sim}14$ days in aerobic and flooded condition, respectively in laboratory system.

  • PDF

Effect of Leaf Blade-cutting on Ripening of Rice (수도(水滔)에 있어 전엽(剪葉)이 등숙(登熟)에 미치는 영향(影響)(예보(豫報)))

  • Park, J.K.;Kim, Y.S.;Lee, J.K.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.1 no.1
    • /
    • pp.125-128
    • /
    • 1968
  • The effect of number of leaf after heading time on the growth of residual part and translocation of carbohydrates were investigated with water culture condition. Mutual shading and root rot were prevented. The results may be summerized as follows; 1. The ratio of ripened grain in the plot of no-leaf, flag leaf, two-leaf(flag and 2nd leaf) and three-leaf (flag, 2nd and 3rd leaf) was 38.8, 74.7, 83.9 and 87.0% respectively. The thousand grain weight was 21.3g, as the lowest value in no-leaf plot and was 28.7g in all other plots. 2. The accumulation of carbohydrate translocated in culm was increased by increment of leave-cutting, whereas the weight of culm was decreased. 3. It was suggested that healthy flag and 2nd leaf can keep the ratio of ripened grain around 80 percent.

  • PDF

Decline in Extractable Veterinary Antibiotics in Chicken Manure-Based Composts during Composting (계분을 원료로 한 퇴비의 퇴비화 과정 중 동물용 항생물질 농도저감)

  • Kwon, Soon-Ik;Jang, Yeon-A;Kim, Kye-Hoon;Kim, Min-Kyeong;Jung, Goo-Bok;Hong, Seung-Chang;Chae, Mi-Jin;So, Kyu-Ho;Kim, Kwon-Rae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.628-634
    • /
    • 2012
  • Release of veterinary antibiotics (VSs) to agricultural environment through application of animal manure and/or animal manure-based composts to soils is of concern. The current study was conducted to examine decline of VAs during composting the chicken manure. For this, antibiotics free chicken manure (20 kg) and sawdust (10 kg) were added to the bench-scale composting apparatus and then the mixed material was spiked simultaneously with three VAs (chlortetracycline, CTC; sulfamethazine, SMZ; tylosin, TYL) at two different levels (10 and $20mg\;kg^{-1}$). Then the decline of VAs was determined using Charm II system during 53 composting period. For comparison, composting only chicken manure was included at VAs concentration of $10mg\;kg^{-1}$. During composting, the concentration of all three different VAs declined below the prospective guideline values ($0.8mg\;kg^{-1}$ for CTC, $0.2mg\;kg^{-1}$ for SMZ, and $1.0mg\;kg^{-1}$ for TYL) except CTC at $20mg\;kg^{-1}$ spiking when the chicken manure was composted together with sawdust. Interestingly, CTC at $10mg\;kg^{-1}$ spiking appeared to be declined under the guideline value without sawdust while SMZ was resistant to be declined without sawdust. Unlike CTC and SMZ, TYL showed immediate decline right after spiking TYL to composting materials regardless the spiking concentration and existence of sawdust. Appropriate composting procedure of chicken manure was able to decline the residual VAs in the manure below the prospective guideline value and the importance of organic substances on this decline was perceived.

Application of Water Model for the Evaluation of Pesticide Exposure (농약의 노출 평가를 위한 수계예측모형의 적용)

  • Son, Kyeong-Ae;Kim, Chan-Sub;Gil, Geun-Hwan;Kim, Taek-Kyum;Kwon, Hyeyoung;Kim, Jinbae;Im, Geon-Jae;Ihm, Yang-Bin
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.236-246
    • /
    • 2014
  • Pesticide is used to protect the crops, but also become a cause of polluting the environment. Perform a risk assessment using physical and chemical properties, environmental fate and toxicity data in order to determine the pesticide registration. The aquatic model estimates pesticide concentrations in water bodies that result from pesticide applications to rice paddies and apple orchard. The used models are the PRZM, EXAMS and AGRO shell (PA5), Rice Water Quality Model (RICEWQ) and Screening Concentration In GROund Water (SCI-GROW). The residual concentration of water body was estimated using meteorological data, crop calendar and soil series of Korea. The chosen pesticides were butachlor, carbofuran, iprobenfos and tebuconazole. It has shown the potential that the RICEWQ is possible to predict residue level in water of butachlor and iprobenfos, because the maximum value in water monitoring data is lower than the peak concentration of the model, and the minimum value is lower than the average annual concentration of the model. But RICEWQ was insufficient to predict exposure concentrations in ground water. The estimated exposure concentrations of carbofuran in ground water is very higher than in surface water because of its low soil adsorption coefficient. Although tebuconazole were not detected in the water monitoring that means very low concentration, it is possible that the PA5 can be used to predict residue level in water.

Effect of Stress History on CPT-DMT Correlations in Granular Soil (응력이력이 사질토의 CPT-DMT 상관관계에 미치는 영향)

  • Lee, Moon-Joo;Choi, Sung-Kun;Kim, Min-Tae;Lee, Ju-Hyeong;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.7-16
    • /
    • 2010
  • Stress history increases the residual horizontal stress of granular soil and, consequently, the penetration resistance. This study analyzes the effect of stress history on the cone resistance ($q_c$), horizontal stress index ($K_D$) and dilatometer modulus ($E_D$) of CPT and DMT from calibration chamber specimen in OC as well as NC state. Test results show that the normalized cone resistance by mean effective stress correlates well with the relative density and the state parameter, whereas the normalized cone resistance by vertical effective stress is a little affected by stress history. The influence of stress history is more reflected on $K_D$ than $E_D$ and $q_c$. The $K_D/K_0$, in which the effect of stress history on $K_D$ is compensated by the at-rest coefficient of earth pressure, $K_0$, is related to relative density, state parameter and the normalized cone resistance by mean effective stress. It is also observed that the normalized dilatometer modulus by mean effective stress ($E_D/{\sigma}_m'$) shows a unique correlation with the state parameter, regardless of stress history.

Finite Element Analysis for the Effects on the Stiffness of the Embankment and Sandmat on the Deformation Property and the Safety of Road Embankment (성토체 및 모래매트의 강성이 하부지반의 변형과 성토체의 안전에 미치는 영향에 대한 유한요소해석)

  • Bae, Woo-Seok;Kim, Jong-Woo;Kwon, Young-Cheul
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.4
    • /
    • pp.57-65
    • /
    • 2007
  • Effects on the stiffness of the embankment and sandmat on the construction safety of road embankment was investigated in this study by the numerical experiments using FEM. Two points was mainly focused in this study especially. First the deformation characteristics by the change of the stiffness of sand mat and embankment was investigated by the analyzing the consolidation settlement at the center of the embankment and the lateral displacement at the toe of the embankment. And, the effect of the stiffness on the stress distribution characteristics was also investigated in this study. Furthermore, slope stability analysis was carried out to gain the safe factor by change the stiffness of the sandmat and the embankment. The objective of the study is supplying the result of the numerical experiments for the geotechnical engineers who use the FEM for the safety design of the soil structures. As a result, the stiffness of the superstructures greatly affects on the deformation characteristics both in consolidation settlement and lateral displacement. However, it can be aware that it is not dominants to the stress distribution in the aspect that the no changes in the residual excess pore water pressure. Therefore, the decision of the stiffness has to be carried out deliberately considering not only the consolidation the magnitude of the settlement and the lateral displacement, but the slope stability.

Heavy Metals Contents and Chemical Characteristics in Compost from Animal Manures (가축분 퇴비의 중금속 함량 및 화학적 형태별 특성)

  • Ko, Han Jong;Kim, Ki Youn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.2
    • /
    • pp.170-177
    • /
    • 2016
  • Objectives: This study was conducted to evaluate the total heavy metals contents and chemical forms in the animal manure compost. Materials and methods: A total of 109 compost samples were collected throughout the country and classified into three groups in accordance with the raw materials; pig manure, poultry manure and mixed(pig+poultry+cattle) manure. The compost samples were analyzed for total metal content and sequential chemical extraction to estimate the quantities of metals. Results: Concentrations of Zn and Cu in several compost samples were higher than the maximum acceptable limits by the Korea Compost Quality Standards. Concentrations of Zn, Cu, and Cd in compost samples were 257~5,102, 68~1,243, and 0.02~2.54 mg/kg respectively, while Cr, Ni, As, and Pb were < 20 mg/kg. The concentrations of heavy metals in pig manure compost were higher than those of both the poultry and the mixed manure compost. The predominant forms for extracted metals were Cr, Ni, Zn, As, and Pb, residual; Cu, organic; and Cd, carbonate. Conclusions: Results indicate that the Zn and Cu contents in compost were higher than other heavy metals and the heavy metal contents were greater in pig manure compost followed by mixed and poultry manure compost. To prevent the accumulation of heavy metals in soil where animal manure compost is applied, strategy for reducing heavy metal concentrations in animal manure and compost must be considered.