• Title/Summary/Keyword: Korean propbank

Search Result 7, Processing Time 0.023 seconds

Korean Semantic Role Labeling Using Structured SVM (Structural SVM 기반의 한국어 의미역 결정)

  • Lee, Changki;Lim, Soojong;Kim, Hyunki
    • Journal of KIISE
    • /
    • v.42 no.2
    • /
    • pp.220-226
    • /
    • 2015
  • Semantic role labeling (SRL) systems determine the semantic role labels of the arguments of predicates in natural language text. An SRL system usually needs to perform four tasks in sequence: Predicate Identification (PI), Predicate Classification (PC), Argument Identification (AI), and Argument Classification (AC). In this paper, we use the Korean Propbank to develop our Korean semantic role labeling system. We describe our Korean semantic role labeling system that uses sequence labeling with structured Support Vector Machine (SVM). The results of our experiments on the Korean Propbank dataset reveal that our method obtains a 97.13% F1 score on Predicate Identification and Classification (PIC), and a 76.96% F1 score on Argument Identification and Classification (AIC).

Korean Sematic Role Labeling Using CRFs (CRFs 기반의 한국어 의미역 결정)

  • Park, Tae-Ho;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.11-14
    • /
    • 2015
  • 의미역 결정은 서술어와 논항들 사이의 의미 관계를 결정하는 문제이다. 의미역 결정을 위해 구구조 정보와 의존 구조 정보 등의 다양한 자질에 대한 실험이 있었다. 논항은 구문 구조에서 얻을 수 있는 서술어와 논항 관계에 많은 영향을 받지만 구문 구조가 변경되어도 변하지 않는 논항의 의미로 인해 의미역 결정에 어려운 점이 있다. 본 논문에서는 한국어 의미역 결정 문제를 위해 Korean Propbank 말뭉치와 직접 구축한 의미역 말뭉치를 학습 말뭉치로 사용하였다. 본 논문에서는 이전에 연구된 구문 정보와 그 외의 자질들에 대한 성능을 검증하였다. 본 논문에서 제시하는 자질들의 성능을 검증하기 위해 CRF를 사용하였고, 제시된 새로운 자질을 사용하여 논항의 인식 및 분류에서 76.25%(F1)의 성능을 보였다.

  • PDF

Korean Semantic Role Labeling Using Semantic Frames and Synonym Clusters (의미 프레임과 유의어 클러스터를 이용한 한국어 의미역 인식)

  • Lim, Soojong;Lim, Joon-Ho;Lee, Chung-Hee;Kim, Hyun-Ki
    • Journal of KIISE
    • /
    • v.43 no.7
    • /
    • pp.773-780
    • /
    • 2016
  • Semantic information and features are very important for Semantic Role Labeling(SRL) though many SRL systems based on machine learning mainly adopt lexical and syntactic features. Previous SRL research based on semantic information is very few because using semantic information is very restricted. We proposed the SRL system which adopts semantic information, such as named entity, word sense disambiguation, filtering adjunct role based on sense, synonym cluster, frame extension based on synonym dictionary and joint rule of syntactic-semantic information, and modified verb-specific numbered roles, etc. According to our experimentations, the proposed present method outperforms those of lexical-syntactic based research works by about 3.77 (Korean Propbank) to 8.05 (Exobrain Corpus) F1-scores.

Korean Semantic Role Labeling Based on Bidirectional LSTM CRFs Using the Semantic Label Distribution of Syllables (음절의 의미역 태그 분포를 이용한 Bidirectional LSTM CRFs 기반의 한국어 의미역 결정)

  • Yoon, Jungmin;Bae, Kyoungman;Ko, Youngjoong
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.324-329
    • /
    • 2016
  • 의미역 결정은 자연어 문장의 서술어와 그 서술어에 속하는 논항들 사이의 의미관계를 결정하는 것이다. 최근 의미역 결정 연구에는 의미역 말뭉치와 기계학습 알고리즘을 이용한 연구가 주를 이루고 있다. 본 논문에서는 순차적 레이블링 영역에서 좋은 성능을 보이고 있는 Bidirectional LSTM-CRFs 기반으로 음절의 의미역 태그 분포를 고려한 의미역 결정 모델을 제안한다. 제안한 음절의 의미역 태그 분포를 고려한 의미역 결정 모델은 분포가 고려되지 않은 모델에 비해 2.41%p 향상된 66.13%의 의미역 결정 성능을 보였다.

  • PDF

Korean Semantic Role Labeling Based on Bidirectional LSTM CRFs Using the Semantic Label Distribution of Syllables (음절의 의미역 태그 분포를 이용한 Bidirectional LSTM CRFs 기반의 한국어 의미역 결정)

  • Yoon, Jungmin;Bae, Kyoungman;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.324-329
    • /
    • 2016
  • 의미역 결정은 자연어 문장의 서술어와 그 서술어에 속하는 논항들 사이의 의미관계를 결정하는 것이다. 최근 의미역 결정 연구에는 의미역 말뭉치와 기계학습 알고리즘을 이용한 연구가 주를 이루고 있다. 본 논문에서는 순차적 레이블링 영역에서 좋은 성능을 보이고 있는 Bidirectional LSTM-CRFs 기반으로 음절의 의미역 태그 분포를 고려한 의미역 결정 모델을 제안한다. 제안한 음절의 의미역 태그 분포를 고려한 의미역 결정 모델은 분포가 고려되지 않은 모델에 비해 2.41%p 향상된 66.13%의 의미역 결정 성능을 보였다.

  • PDF

A Study of Korean Semantic Role Labeling using Word Sense (의미 정보를 이용한 한국어 의미역 인식 연구)

  • Lim, Soojong;Kim, Hyunki
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.18-22
    • /
    • 2015
  • 기계학습 기반의 의미역 인식에서 주로 어휘, 구문 정보가 자질로 주로 쓰이지만, 의미 정보를 분석하는 의미역 인식은 단어의 의미 정보 또한 매우 주요한 정보이다. 그러나, 기존 연구에서는 의미 정보를 활용할 수 있는 방법이 제한되어 있기 때문에, 소수의 연구만 진행되었다. 본 논문에서는 동형이의어 수준의 의미 애매성 해소 기술, 고유 명사에 대한 개체명 인식 기술, 의미 정보에 기반한 필터링, 유의어 사전을 이용한 클러스터 및 기존 프레임 정보를 확장하는 방법을 제안한다. 제안하는 방법은 기존 연구 대비 뉴스 도메인인 Korean Propbank는 3.14, 위키피디아 문서 기반의 WiseQA 평가셋인 GS 3.0에서는 6.57의 성능 향상을 보였다.

  • PDF

Hierarchical Learning for Semantic Role Labeling with Syntax Information (계층형 문장 구조 인코더를 이용한 한국어 의미역 결정)

  • Kim, Bong-Su;Kim, Jungwook;Whang, Taesun;Lee, Saebyeok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.199-202
    • /
    • 2021
  • 의미역 결정은 입력된 문장 내 어절간의 의미 관계를 예측하기 위한 자연어처리 태스크이며, 핵심 서술어에 따라 상이한 의미역 집합들이 존재한다. 기존의 연구는 문장 내의 서술어의 개수만큼 입력 문장을 확장해 순차 태깅 문제로 접근한다. 본 연구에서는 확장된 입력 문장에 대해 구문 분석을 수행 후 추출된 문장 구조 정보를 의미역 결정 모델의 자질로 사용한다. 이를 위해 기존에 학습된 구문 분석 모델의 파라미터를 전이하여 논항의 위치를 예측한 후 파이프라인을 통해 의미역 결정 모델을 학습시킨다. ALBERT 사전학습 모델을 통해 입력 토큰의 표현을 얻은 후, 논항의 위치에 대응되는 표현을 따로 추상화하기 위한 계층형 트랜스포머 인코더 레이어 구조를 추가했다. 실험결과 Korean Propbank 데이터에 대해 F1 85.59의 성능을 보였다.

  • PDF