Causal relationships of kindergarteners' phonological awareness and processing to their ability to read words was investigated with the participation of 289 4- to 6-year-old children attending three kindergartens in Busan. Results showed gradual growth in reading ability with age. Children performed best in reading words and poorest in reading low frequency letters. They showed continuous development in skills of syllable deletion, phoneme substitution, phoneme insertion, phonological memory and naming. Discontinuous development was found in counting syllables. Longer syllables were difficult to count, and middle syllables of 3 syllable words were hard to delete. Children had poor perception of final consonants of Consonant-Vowel-Consonant syllables. Children's phonological awareness and processing were latent variables strongly related to ability to read words written in Hangul.
In this paper, we propose a use of confidence vector as an intermediate input feature for multi-stage based speech recognition architecture to improve recognition accuracy. A multi-stage speech recognition structure is introduced as a method to reduce the computational complexity of the decoding procedure and then accomplish faster speech recognition. Conventional multi-stage speech recognition is usually composed of three stages, acoustic search, lexical search, and acoustic re-scoring. In this paper, we focus on improving the accuracy of the lexical decoding by introducing a confidence vector as an input feature instead of phoneme which was used typically. We take experimental results on 220K Korean Point-of-Interest (POI) domain and the experimental results show that the proposed method contributes on improving accuracy.
The objective of this study was to analyze the acoustic patterns of Japanese /t/ produced by 40 Korean speakers in order to find an effective method of teaching it to Koreans. The experimental data consisted of 400 /t/ phonemes in word initial or non-initial positions of 10 words. Informants were in their twenties and raised in Daejeon and the surrounding area. Results showed that there were distinctive trends in duration and intensity of the major and non-major groups productions. Both groups pronounced the phoneme longer than the native speakers with more open mouths but with less loudness. The formant analysis showed that F1 values of the Japanese /t/ pronounced by Japanese major group were lower than those of the non-major. Its F2 values by the major group were higher than those of the non-major, which would suggest that the Koreans produced the tongue blade in more frontal position than the native speakers.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2003.06a
/
pp.18-21
/
2003
In general it has been considered to be the difficult problem that we divide continuous speech into short interval with having identical phoneme quality. In this paper we used Gaussian Mixture Model (GMM) related to probability density to divide speech into phonemes, an initial, medial, and final sound. From them we peformed continuous speech recognition. Decision boundary of phonemes is determined by algorithm with maximum frequency in a short interval. Recognition process is performed by Continuous Hidden Markov Model(CHMM), and we compared it with another phoneme divided by eye-measurement. For the experiments result we confirmed that the method we presented is relatively superior in auto-segmentation in korean speech.
Proceedings of the Acoustical Society of Korea Conference
/
1994.06a
/
pp.1046-1051
/
1994
It is known that SOFM has the property of effectively creating topographically the organized map of various features on input signals, SOFM can effectively be applied to the recognition of Korean phonemes. However, is isn't guaranteed that the network is sufficiently learned in SOFM algorithm. In order to solve this problem, we propose the learning algorithm combined with the conventional K-means clustering algorithm in fine-tuning stage. To evaluate the proposed algorithm, we performed speaker dependent recognition experiment using six phoneme classes. Comparing the performances of the Kohonen's algorithm with a proposed algorithm, we prove that the proposed algorithm is better than the conventional SOFM algorithm.
This study aims to compare the word decoding skills, phonological awareness (PA), rapid automatized naming (RAN) skills, and letter knowledge of first graders with developmental dyslexia (DD) and those who were typically developing (TD). Eighteen children with DD and eighteen TD children, matched by nonverbal intelligence and discourse ability, participated in the study. Word decoding of Korean language-based reading assessment(Pae et al., 2015) was conducted. Phoneme-grapheme correspondent words were analyzed according to whether the word has meaning, whether the syllable has a final consonant, and the position of the grapheme in the syllable. Letter knowledge asked about the names and sounds of 12 consonants and 6 vowels. The children's PA of word, syllable, body-coda, and phoneme blending was tested. Object and letter RAN was measured in seconds. The decoding difficulty of non-words was more noticeable in the DD group than in the TD one. The TD children read the syllable initial and syllable final position with 99% correctness. Children with DD read with 80% and 82% correctness, respectively. In addition, the DD group had more difficulty in decoding words with two patchims when compared with the TD one. The DD group read only 57% of words with two patchims correctly, while the TD one read 91% correctly. There were significant differences in body-coda PA, phoneme level PA, letter RAN, object RAN, and letter-sound knowledge between the two groups. This study confirms the existence of Korean developmental dyslexics, and the urgent need for the inclusion of a Korean-specific phonics approach in the education system.
The purpose of this paper is a design and implementation for korean character and pen-gesture recognition system in multimedia terminal, PDA and etc, which demand both a fast process and a high recognition rate. To recognize writing-types which are written by various users, the korean character recognition system uses a database which is based on the characteristic information of korean and the stroke information Which composes a phoneme, etc. In addition. it has a fast speed by the phoneme segmentation which uses the successive process or the backtracking process. The pen-gesture recognition system is performed by a matching process between the classification features extracted from an input pen-gesture and the classification features of 15 pen-gestures types defined in the gesture model. The classification feature is using the insensitive stroke information. i.e., the positional relation between two strokes. the crossing number, the direction transition, the direction vector, the number of direction code. and the distance ratio between starting and ending point in each stroke. In the experiment, we acquired a high recognition rate and a fart speed.
Many sentiment categorization systems based on machine learning methods use morphological analyzers in order to extract linguistic features from sentences. However, the morphological analyzers do not generally perform well in a customer review domain because online customer reviews include many spacing errors and spelling errors. These low performances of the underlying systems lead to performance decreases of the sentiment categorization systems. To resolve this problem, we propose a feature extraction method based on simple longest matching of Eojeol (a Korean spacing unit) and phoneme patterns. The two kinds of patterns are automatically constructed from a large amount of POS (part-of-speech) tagged corpus. Eojeol patterns consist of Eojeols including content words such as nouns and verbs. Phoneme patterns consist of leading consonant and vowel pairs of predicate words such as verbs and adjectives because spelling errors seldom occur in leading consonants and vowels. To evaluate the proposed method, we implemented a sentiment categorization system using a SVM (Support Vector Machine) as a machine learner. In the experiment with Korean customer reviews, the sentiment categorization system using the proposed method outperformed that using a morphological analyzer as a feature extractor.
To improve the performance of automatic labelling system, the context-dependent demiphone unit was proposed. A phone is divided into two parts: a left demiphone that accounts for the left side coarticulation and a right demiphone that copes with the right side context. Demiphone unit provides a better training of the transition between phones. In this paper, If the length of the phone is less than 120 msec, it is split into two demiphones. If the length of the phone is greater than 120 msec, it is divided into three parts. In order to evaluate the performance of the system, we use 452 phonetically balanced words(PBW) database for training and testing phoneme models. According to the experiment, the system using proposed demiphone unit compared with that using old demiphone unit gains 3.83% improved result(71.63%) within 10ms of the duo boundary, and 2.20% improved result(86.41%) within 20ms of the true boundary.
In this paper, for natural facial synthesis, lip-synch algorithm based on key-frame method using RBF(radial bases function) is presented. For lips synthesizing, we make viseme range parameters from phoneme and its duration information that come out from the text-to-speech(TTS) system. And we extract viseme information from Av DB that coincides in each phoneme. We apply dominance function to reflect coarticulation phenomenon, and apply bilinear interpolation to reduce calculation time. At the next time lip-synch is performed by playing the synthesized images obtained by interpolation between each phonemes and the speech sound of TTS.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.