• Title/Summary/Keyword: Korean news articles

Search Result 330, Processing Time 0.026 seconds

An Exploratory Study of Health Inequality Discourse Using Korean Newspaper Articles: A Topic Modeling Approach

  • Kim, Jin-Hwan
    • Journal of Preventive Medicine and Public Health
    • /
    • v.52 no.6
    • /
    • pp.384-392
    • /
    • 2019
  • Objectives: This study aimed to explore the health inequality discourse in the Korean press by analyzing newspaper articles using a relatively new content analysis technique. Methods: This study used the search term "health inequality" to collect articles containing that term that were published between 2000 and 2018. The collected articles went through pre-processing and topic modeling, and the contents and temporal trends of the extracted topics were analyzed. Results: A total of 1038 articles were identified, and 5 topics were extracted. As the number of studies on health inequality has increased over the past 2 decades, so too has the number of news articles regarding health inequality. The extracted topics were public health policies, social inequalities in health, inequality as a social problem, healthcare policies, and regional health gaps. The total number of occurrences of each topic increased every year, and the trend observed for each theme was influenced by events related to its contents, such as elections. Finally, the frequency of appearance of each topic differed depending on the type of news source. Conclusions: The results of this study can be used as preliminary data for future attempts to address health inequality in Korea. To make addressing health inequality part of the public agenda, the media's perspective and discourse regarding health inequality should be monitored to facilitate further strategic action.

Text Mining and Network Analysis of News Articles for Deriving Socio-Economic Damage Types of Heat Wave Events in Korea: 2012~2016 Cases (뉴스 기사 텍스트 마이닝과 네트워크 분석을 통한 폭염의 사회·경제적 영향 유형 도출: 2012~2016년 사례)

  • Jung, Jae In;Lee, Kyoungjun;Kim, Seungbum
    • Atmosphere
    • /
    • v.30 no.3
    • /
    • pp.237-248
    • /
    • 2020
  • In order to effectively prepare for damage caused by weather events, it is important to proactively identify the possible impacts of weather phenomena on the domestic society and economy. Text mining and Network analysis are used in this paper to build a database of damage types and levels caused by heat wave. We collect news articles about heat wave from the SBS news website and determine the primary and secondary effects of that through network analysis. In addition to that, based on the frequency with which each impact keyword is mentioned, we estimate how much influence each factor has. As a result, the types of impacts caused by heat wave are efficiently derived. Among these types of impacts, we find that people in South Korea are mainly interested in algae and heat-related illness. Since this technique of analysis can be applied not only to news articles but also to social media contents, such as Twitter and Facebook, it is expected to be used as a useful tool for building weather impact databases.

Developing and Evaluating Damage Information Classifier of High Impact Weather by Using News Big Data (재해기상 언론기사 빅데이터를 활용한 피해정보 자동 분류기 개발)

  • Su-Ji, Cho;Ki-Kwang Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.7-14
    • /
    • 2023
  • Recently, the importance of impact-based forecasting has increased along with the socio-economic impact of severe weather have emerged. As news articles contain unconstructed information closely related to the people's life, this study developed and evaluated a binary classification algorithm about snowfall damage information by using media articles text mining. We collected news articles during 2009 to 2021 which containing 'heavy snow' in its body context and labelled whether each article correspond to specific damage fields such as car accident. To develop a classifier, we proposed a probability-based classifier based on the ratio of the two conditional probabilities, which is defined as I/O Ratio in this study. During the construction process, we also adopted the n-gram approach to consider contextual meaning of each keyword. The accuracy of the classifier was 75%, supporting the possibility of application of news big data to the impact-based forecasting. We expect the performance of the classifier will be improve in the further research as the various training data is accumulated. The result of this study can be readily expanded by applying the same methodology to other disasters in the future. Furthermore, the result of this study can reduce social and economic damage of high impact weather by supporting the establishment of an integrated meteorological decision support system.

A Study on an Effective Event Detection Method for Event-Focused News Summarization (사건중심 뉴스기사 자동요약을 위한 사건탐지 기법에 관한 연구)

  • Chung, Young-Mee;Kim, Yong-Kwang
    • Journal of the Korean Society for information Management
    • /
    • v.25 no.4
    • /
    • pp.227-243
    • /
    • 2008
  • This study investigates an event detection method with the aim of generating an event-focused news summary from a set of news articles on a certain event using a multi-document summarization technique. The event detection method first classifies news articles into the event related topic categories by employing a SVM classifier and then creates event clusters containing news articles on an event by a modified single pass clustering algorithm. The clustering algorithm applies a time penalty function as well as cluster partitioning to enhance the clustering performance. It was found that the event detection method proposed in this study showed a satisfactory performance in terms of both the F-measure and the detection cost.

AI-based system for automatically detecting food risk information from news data (뉴스 데이터로부터 식품위해정보 자동 추출을 위한 인공지능 기술)

  • Baek, Yujin;Lee, Jihyeon;Kim, Nam Hee;Lee, Hunjoo;Choo, Jaegul
    • Food Science and Industry
    • /
    • v.54 no.3
    • /
    • pp.160-170
    • /
    • 2021
  • A recent advance in communication technologies accelerates the spread of food safety issues once presented by the news media. To respond to those safety issues and take steps in a timely manner, automatically detecting related information from the news data matters. This work presents an AI-based system that detects risk information within a food-related news article. Experts in food safety areas participated in labeling risk information from the food-related news articles; we acquired 43,527 articles in which food names and risk information are marked as labels. Based on the news document, our system automatically detects food names and risk information by analyzing similarities between words within a text by leveraging learned word embedding vectors. Our AI-based system shows higher detection accuracy scores over a non-AI rule-based system: achieving an absolute gain of +32.94% in F1 for the food name category and +41.53% for the risk information category.

A Study on the Fashion Journalism in the Field of Daily Newspaper (한국(韓國) 패션저널리즘의 현황(現況) 연구(硏究)(1) - 5개 종합일간지(綜合日刊紙) 기사(記事)를 중심(中心)으로 -)

  • Lee, Sung-Hee;Cho, Kyu-Hwa
    • Journal of Fashion Business
    • /
    • v.8 no.4
    • /
    • pp.45-59
    • /
    • 2004
  • The purpose of this study is to discover the present situation of fashion journalism, which is a collaborator and watchdog of the fast-growing fashion business industry, then to proffer fundamental data for the setting of desirable fashion journalism in the field of newspaper. Unlike magazine and internet news service which are focused on a specific group, daily newspaper has a far-reaching influence without regarding the age, gender and social status of the readers. Therefore, how newspaper deals with fashion and fashion phenomena has immense influence on the attitude and understanding of common people on fashion. Defining fashion journalism is an activity of gathering and mediating of various ideas and opinions on fashion, the beginning of fashion journalism of newspaper traces back to the late of 19th century. From then to the period of Japan's occupancy by force, newspaper used fashion articles to lead enlightenment of lifestyle. After Korean War, newspaper was one of the main path of in-flowing western culture and fashion trend till 1970s. During $1980s{\sim}1990s$, fashion articles in newspaper were separated from woman and family section and fashion journalism made their own way to a specialized field. In the beginning of 21st century, fashion journalism in the field of newspaper is armed with more various and profound contents then ever, but it is also true fashion journalism is not free from accusation of commercialization and agitation of preference on imported luxury goods. Today fashion articles of daily newspapers are not subordinated to the common idea, 'fashion is only for women'. Fashion articles deals with men as well as women. Information on new products is regarded more important than fashion trend. Articles are not restricted in the fashion section. It means fashion journalism is expanding its territory to business section, opinion section and so on. However, fashion news dealing with aged people or young children are very rare. It suggests target readers of fashion news are concentrated on the people who have a considerable buying power. An main article usually has more than 3 photos. That means not only photos in fashion news are established as essential visual information today but also commercialization of fashion news makes rapid progress in this field. Also the considerable dependancy on the information sources from manufacturing side can be a problem of sustaining accuracy and impartiality of news.

Machine Learning Method in Medical Education: Focusing on Research Case of Press Frame on Asbestos (의학교육에서 기계학습방법 교육: 석면 언론 프레임 연구사례를 중심으로)

  • Kim, Junhewk;Heo, So-Yun;Kang, Shin-Ik;Kim, Geon-Il;Kang, Dongmug
    • Korean Medical Education Review
    • /
    • v.19 no.3
    • /
    • pp.158-168
    • /
    • 2017
  • There is a more urgent call for educational methods of machine learning in medical education, and therefore, new approaches of teaching and researching machine learning in medicine are needed. This paper presents a case using machine learning through text analysis. Topic modeling of news articles with the keyword 'asbestos' were examined. Two hypotheses were tested using this method, and the process of machine learning of texts is illustrated through this example. Using an automated text analysis method, all the news articles published from January 1, 1990 to November 15, 2016 in South Korea which included 'asbestos' in the title and the body were collected by web scraping. Differences in topics were analyzed by structured topic modelling (STM) and compared by press companies and periods. More articles were found in liberal media outlets. Differences were found in the number and types of topics in the articles according to the partisanship and period. STM showed that the conservative press views asbestos as a personal problem, while the progressive press views asbestos as a social problem. A divergence in the perspective for emphasizing the issues of asbestos between the conservative press and progressive press was also found. Social perspective influences the main topics of news stories. Thus, the patients' uneasiness and pain are not presented by both sources of media. In addition, topics differ between news media sources based on partisanship, and therefore cause divergence in readers' framing. The method of text analysis and its strengths and weaknesses are explained, and an application for the teaching and researching of machine learning in medical education using the methodology of text analysis is considered. An educational method of machine learning in medical education is urgent for future generations.

Newspaper analysis of research on dental hygienists in Korea from 2005 to 2008 (한국 신문에 게재된 치과위생사 관련 기사 분석: 2005~2008년 기사를 중심으로)

  • Oh, Sang-Hwan;Nam, Yong-Ok;Jang, Jong-Hwa
    • Journal of Korean society of Dental Hygiene
    • /
    • v.9 no.1
    • /
    • pp.59-71
    • /
    • 2009
  • Objectives : The purpose of this study is to devise a way of the dental hygienist to explore the articles of dental hygienist that were presented in the newspaper during the recent 3 years of Korea. Methods : This study is to examine dental hygienist articles with content analysis in the KINDS(Korean Integrated News Database System) of the Korean Press Foundation. Data were gathered from the printed newspaper of Korea over a period of 3 years - 1 March, 2005 to 30 March 2008. News reports, comments and letters to the editor were analysed, which revealed an image of dental hygienist that we would like to explore and debate. The obtained data from the frequency, percentage, chi-squared test between categories after inter-coder reliability test (reliability 0.96). Results : The articles of dental hygienist according to type of newspaper, 'local newspaper' showed higher frequency than 'metropolitan newspaper'. It mix '치과위생사'(42.3%), '치위생사'(49.4%), and '위생사'(3.9%) in use of name. The article pattern, 'news' 40.0%, 'information commentary' 18.3%, 'interview man' 15.8%, 'special news' 14.2% in metropolitan newspaper, then, 'news' 72.6%, 'information commentary' 23.2% in local newspaper (p<0.05). Most plenty of subject is 'administration system', and then 'celebration', 'publicity'. It showed 'seoul' was 'information commentary', 'country' was 'administration system', 'whole' was 'legal duty', 'unrelated area' was 'social living' in the topic of article according to newsbeat(p<0.05). Conclusions : These results suggest that it is necessary to publicity name, duty of dental hygienist in metropolitan newspaper officially.

  • PDF

Analysis of Major Changes in Press Articles Related to 'High School Credit System'

  • Kwon, Choong-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.7
    • /
    • pp.183-191
    • /
    • 2020
  • The purpose of this study is to objectively analyze the trend of media articles related to the 'high school credit system' (2017~2019: 3 years), which has become the biggest concern among Korean education policies, through BIGKinds, a news data big data analysis service for media companies. The main research methodologies were BIGKinds system's specific search term news search, news trend analysis, keyword extraction and wordcloud implementation, network analysis and network picture presentation. The research results are as follows; First, the number of articles related to the high school credit system that appeared in major media outlets in Korea for 3 years from 2017 to 2019 was 3,649. The number of articles was sharply increased at a certain point about 4 times, based on the government's announcement of related policies. It showed an increasing news trend. Second, the top 20 keywords that emerged from the press articles related to the high school credit system for 3 years of analysis were presented, and it was confirmed that the keyword change by year appeared. Third, the network of media articles related to the high school credit system was visualized and presented in different ways by person, institution, and keyword. The results of this study confirmed that the high school credit system education policy was adopted as the representative education policy of the Moon Jae-in government, and is proceeding in the policy decision stage and policy implementation stage.

Feature Weighting for Opinion Classification of Comments on News Articles (뉴스 댓글의 감정 분류를 위한 자질 가중치 설정)

  • Lee, Kong-Joo;Kim, Jae-Hoon;Seo, Hyung-Won;Rhyu, Keel-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.871-879
    • /
    • 2010
  • In this paper, we present a system that classifies comments on a news article into a user opinion called a polarity (positive or negative). The system is a kind of document classification system for comments and is based on machine learning techniques like support vector machine. Unlike normal documents, comments have their body that can influence classifying their opinions as polarities. In this paper, we propose a feature weighting scheme using such characteristics of comments and several resources for opinion classification. Through our experiments, the weighting scheme have turned out to be useful for opinion classification in comments on Korean news articles. Also Korean character n-grams (bigram or trigram) have been revealed to be helpful for opinion classification in comments including lots of Internet words or typos. In the future, we will apply this scheme to opinion analysis of comments of product reviews as well as news articles.