• Title/Summary/Keyword: Korean medicinal treatment

Search Result 1,447, Processing Time 0.026 seconds

Analysis of Existing Guidelines and Randomized, Controlled, Clinical Trials for Development of [Guideline of Clinical Trial with Herbal Medicinal Product for gastric cancer] (위암 한약제제 임상시험 가이드라인 개발을 위한 한약제제 무작위배정 대조군 임상시험 고찰)

  • Han, Gajin;Seong, Sin;Kim, Sungsu;Kim, Jinsung;Park, Jae-Woo
    • The Journal of Korean Medicine
    • /
    • v.38 no.3
    • /
    • pp.124-142
    • /
    • 2017
  • Objectives: This study aimed to learn what should be considered in [Guideline of Clinical Trial with Herbal Medicinal Product for Gastric Cancer)] by analyzing the existing guidelines and clinical trials. Methods: The development committee searched guidelines for herbal medicinal product or gastric cancer developed already. Then, clinical trials for gastric cancer using herbal medicine were searched. The searched trials were analyzed in terms of inclusion and exclusion of participants, intervention, comparator, outcomes and trial design. Then, we compared the results of analysis with the regulations and guidelines of Ministry of Food and Drug Safety to suggest the issue that we will have to consider when making the [Guideline of Clinical Trial with Herbal Medicinal Product for Gastric Cancer]. Results: As a result, few guidelines for anti-tumor agent and clinical trial with herbal medicinal product were searched in the national institution homepage. In addition, 10 articles were searched by using the combination following search term; 'stomach neoplasm', 'herbal medicine', 'Medicine, Korean traditional', 'Medicine, Chinese Traditional', 'TCM', 'TKM', 'trial'. Most trials included gastric cancer participants with medical history of operation. The type of intervention was various such as decoction, granules, and fluid of intravenous injection. Comparators were diverse such as placebo, conventional treatment including chemotherapy and nutritional supplement. The most frequently used outcome for efficacy was quality of life. Besides, the symptom score, tumor response, and survival rate were used. Safety was investigated by recording adverse events. Conclusion: We found out some issue by reviewing the existing guidelines and comparing it with clinical trials for gastric cancer and herbal medicinal products. These results will be utilized for developing [Guideline of Clinical Trial with Herbal Medicinal Product for Gastric Cancer].

Selection of Oriental Medicinal Plants for Screening of Anticancer Agents (항암소재의 발굴을 위한 한방소재의 선별)

  • Park, Keun-Hyoung;Kim, So-Young;Chae, Hee-Jeong
    • KSBB Journal
    • /
    • v.22 no.3
    • /
    • pp.139-145
    • /
    • 2007
  • An oriental medicinal database was used from medicinal plants for screening of anticancer agents. The prescription frequency and dosage of medicinal plats in 170 anticancer prescriptions were analyzed. From the total prescription score of each medical plant, it was found that high-scored medicinal plants have been widely studied in the previous research on the cancer treatment. Consequently, dangui, hwangui, banha, bachul, jinpy, insam, bacjakyak, deahwang, chungoong, jimo, chunnamsung, omija, hyunggae, huekchook, banggi, boclyung, osooyou were selected as raw materials for the screening of anticancer agents.

Synthesis of Neplanocin A Analog with 2′-“up”-C-Methyl Substituent as Potential Anti-HCV Agent

  • Lee, Hyung-Rock;Kang, Jin-Ah;Park, Ah-Young;Kim, Won-Hee;Chun, Pu-Soon;Kim, Jung-Su;Kim, Jin-Ah;Lee, Bo-Eun;Jeong, Lak-Shin;Moon, Hyung-Ryong
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.2043-2050
    • /
    • 2009
  • 2′-$\beta$-C-Methylneplanocin A (3) was synthesized via 2-$\beta$-C-methylribonolactone, prepared by a modified Whistler and BeMiller’s method developed by our laboratory, as potential anti-HCV agent. Reduction of 14 with Dibal-H afforded 26 in a good yield with a trace of 25, whereas a Luche reduction gave 26/25 = 4/1 mixture. Several attempts were made to chemoselectively remove TBS group in the presence of TBDPS group and treatment with both PPTS and TsOH showed the best result. Condensation of 26 with 6-chloropurine under Mitsunobu conditions produced an $S_N$2 product 27 along with an $S_N$2′ product 28.

Differences in Heavy Metal Accumulation in Different Medicinal Plants in Association with Lime Application

  • Kim, Hyuck-Soo;Seo, Byoung-Hwan;Bae, Jun-Sik;Kim, Won-Il;Hong, Chang-Oh;Kim, Kwon-Rae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.3
    • /
    • pp.271-274
    • /
    • 2016
  • This study examined variation in Cd and Pb uptake among different medi cinal plants grown under the same soil environment together with immobilizing effect of lime to decrease these metals accumulation by the medicinal plants. For this, lime was incorporated into a heavy metal-contaminated soil at 1% followed by cultivation of seven different annual and 5 different biennial medicinal plants. In order for comparison, control soil without lime treatment was included and all the pot trials were carried out four replicates. Cadmium and Pb concentrations in medicinal plant roots grown in the control soil varied between 0.5 and $2.8mg\;kg^{-1}$ for Cd and 3.2 and $82.4mg\;kg^{-1}$ for Pb. The highest accumulation occurred in C. officinale and the lowest in D. batatas. Lime application decreased average Cd and Pb concentrations in the examined medicinal plants from $1.3mg\;kg^{-1}$ and $25.7mg\;kg^{-1}$ to $0.6mg\;kg^{-1}$ and $11.9mg\;kg^{-1}$, respectively in comparison with those grown in the control soil.

Mobile Application for Supporting Medical Treatment in Korean Medicine (한의 진료 지원 모바일 애플리케이션)

  • Kim, Sang Kyun;Oh, Yong Taek;Kim, An Na;Kim, Ji Young;Yea, Sang Jun;Kim, Chul;Jang, Hyun Chul
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.6
    • /
    • pp.834-841
    • /
    • 2012
  • We in this paper propose a mobile application for supporting medical treatment based on Korean medicine ontology. It has three processes for treating patients. First, after a pattern is decided for patient' symptoms, a formula for the pattern is selected and medicinal materials constituting the formula is added or removed. Second, formulas are searched and prescribed for patient's symptoms without the process of the pattern decision. Third, after medicinal materials are searched for patient's symptoms, formulas consisting of the medicinal materials are prescribed. Our application aims to help korean medicine doctors treat patients through providing decision supporting functions such as the recommendation of symptoms of diseases accompanying patient's symptom. Doctors generally diagnosis patients according to their experiences and knowledges. Nevertheless, our application can help them, providing diverse forms of information that they may miss in the medical treatment.

Review of Anti-Leukemia Effects from Medicinal Plants (항 백혈병작용에 관련된 천연물의 자료조사)

  • Pae Hyun Ock;Lim Chang Kyung;Jang Seon Il;Han Dong Min;An Won Gun;Yoon Yoo Sik;Chon Byung Hun;Kim Won Sin;Yun Young Gab
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.605-610
    • /
    • 2003
  • According to the Leukemia and Lymphoma Society, leukemia is a malignant disease (cancer) that originates in a cell in the marrow. It is characterized by the uncontrolled growth of developing marrow cells. There are two major classifications of leukemia: myelogenous or lymphocytic, which can each be acute or chronic. The terms myelogenous or lymphocytic denote the cell type involved. Thus, four major types of leukemia are: acute or chronic myelogenous leukemia and acute or chronic lymphocytic leukemia. Leukemia, lymphoma and myeloma are considered to be related cancers because they involve the uncontrolled growth of cells with similar functions and origins. The diseases result from an acquired (not inherited) genetic injury to the DNA of a single cell, which becomes abnormal (malignant) and multiplies continuously. In the United States, about 2,000 children and 27,000 adults are diagnosed each year with leukemia. Treatment for cancer may include one or more of the following: chemotherapy, radiation therapy, biological therapy, surgery and bone marrow transplantation. The most effective treatment for leukemia is chemotherapy, which may involve one or a combination of anticancer drugs that destroy cancer cells. Specific types of leukemia are sometimes treated with radiation therapy or biological therapy. Common side effects of most chemotherapy drugs include hair loss, nausea and vomiting, decreased blood counts and infections. Each type of leukemia is sensitive to different combinations of chemotherapy. Medications and length of treatment vary from person to person. Treatment time is usually from one to two years. During this time, your care is managed on an outpatient basis at M. D. Anderson Cancer Center or through your local doctor. Once your protocol is determined, you will receive more specific information about the drug(s) that Will be used to treat your leukemia. There are many factors that will determine the course of treatment, including age, general health, the specific type of leukemia, and also whether there has been previous treatment. there is considerable interest among basic and clinical researchers in novel drugs with activity against leukemia. the vast history of experience of traditional oriental medicine with medicinal plants may facilitate the identification of novel anti leukemic compounds. In the present investigation, we studied 31 kinds of anti leukemic medicinal plants, which its pharmacological action was already reported through many experimental articles and oriental medical book: 『pharmacological action and application of anticancer traditional chinese medicine』 In summary: Used leukemia cellline are HL60, HL-60, Jurkat, Molt-4 of human, and P388, L-1210, L615, L-210, EL-4 of mouse. 31 kinds of anti leukemic medicinal plants are Panax ginseng C.A Mey; Polygonum cuspidatum Sieb. et Zucc; Daphne genkwa Sieb. et Zucc; Aloe ferox Mill; Phorboc diester; Tripterygium wilfordii Hook .f.; Lycoris radiata (L Her)Herb; Atractylodes macrocephala Koidz; Lilium brownii F.E. Brown Var; Paeonia suffruticosa Andr.; Angelica sinensis (Oliv.) Diels; Asparagus cochinensis (Lour. )Merr; Isatis tinctoria L.; Leonurus heterophyllus Sweet; Phytolacca acinosa Roxb.; Trichosanthes kirilowii Maxim; Dioscorea opposita Thumb; Schisandra chinensis (Rurcz. )Baill.; Auium Sativum L; Isatis tinctoria, L; Ligustisum Chvanxiong Hort; Glycyrrhiza uralensis Fisch; Euphorbia Kansui Liou; Polygala tenuifolia Willd; Evodia rutaecarpa (Juss.) Benth; Chelidonium majus L; Rumax madaeo Mak; Sophora Subprostmousea Chunet T.ehen; Strychnos mux-vomical; Acanthopanax senticosus (Rupr.et Maxim.)Harms; Rubia cordifolia L. Anti leukemic compounds, which were isolated from medicinal plants are ginsenoside Ro, ginsenoside Rh2, Emodin, Yuanhuacine, Aleemodin, phorbocdiester, Triptolide, Homolycorine, Atractylol, Colchicnamile, Paeonol, Aspargus polysaccharide A.B.C.D, Indirubin, Leonunrine, Acinosohic acid, Trichosanthin, Ge 132, Schizandrin, allicin, Indirubin, cmdiumlactone chuanxiongol, 18A glycyrrhetic acid, Kansuiphorin A 13 oxyingenol Kansuiphorin B. These investigation suggest that it may be very useful for developing more effective anti leukemic new dregs from medicinal plants.

Medicinal herb extracts ameliorate impaired growth performance and intestinal lesion of newborn piglets challenged with the virulent porcine epidemic diarrhea virus

  • Kim, Hyeun Bum;Lee, Chul Young;Kim, Sung Jae;Han, Jeong Hee;Choi, Keum Hwa
    • Journal of Animal Science and Technology
    • /
    • v.57 no.10
    • /
    • pp.33.1-33.7
    • /
    • 2015
  • The objective of this study was to evaluate effects of a combined use of extracts of medicinal herbs Taraxaumi mongolicum, Viola yedoensis Makino, Rhizoma coptidis, and Radix isatidis (MYCI) on porcine epidemic diarrhea (PED). Twenty-two 3-day-old piglets received an oral challenge with $3{\times}10^{3.5}$ $TCID_{50}$ of the virulent PED virus (PEDV) in PBS or PBS only and daily oral administration of 60 mg of the MYCI mixture suspended in milk replacer or the vehicle for 7 days in a $2{\times}2$ factorial arrangement of treatments. Average daily gain (ADG) increased (p < 0.05) in response to the MYCI treatment in the PEDV-challenged piglets (-18 vs. 7 g for the vehicle- vs. MYCI-administered group), but not in unchallenged animals (27 vs. 28 g). Diarrhea score and fecal PEDV shedding, however, were not influenced by the MYCI treatment. The PEDV challenge caused severe intestinal villus atrophy and crypt hyperplasia, both of which were alleviated by administration of the MYCI mixture as indicated by an increase in the villus height and a decrease in the crypt depth due to the treatment. Overall, medicinal herb extracts used in this study ameliorated impaired growth performance and intestinal lesion of newborn piglets challenged with the virulent PEDV. Therefore, our results suggest that the MYCI mixture could be used as a prophylactic or therapeutic agent against PED.

6-O-Galloylsalidroside, an Active Ingredient from Acer tegmentosum, Ameliorates Alcoholic Steatosis and Liver Injury in a Mouse Model of Chronic Ethanol Consumption

  • Kim, Young Han;Woo, Dong-Cheol;Ra, Moonjin;Jung, Sangmi;Kim, Ki Hyun;Lee, Yongjun
    • Natural Product Sciences
    • /
    • v.27 no.3
    • /
    • pp.201-207
    • /
    • 2021
  • We have previously reported that Acer tegmentosum extract, which is traditionally used in Korea to reduce alcohol-related liver injury, suppresses liver inflammation caused by excessive alcohol consumption and might improve metabolism. The active ingredient, 6-O-galloylsalidroside (GAL), was isolated from A. tegmentosum, and we hypothesized that GAL could provide desirable pharmacological benefits by ameliorating physiological conditions caused by alcohol abuse. Therefore, this study focused on whether GAL could ameliorate alcoholic fat accumulation and repair liver injury in mice. During chronic alcohol consumption plus binge feeding in mice, GAL was administered orally once per day for 11 days. Intrahepatic lipid accumulation was measured in vivo using a noninvasive method, 1H magnetic resonance imaging, and confirmed by staining with hematoxylin and eosin and Oil Red O. The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured using a Konelab system, and the triglyceride content was measured in liver homogenates using an enzymatic peroxide assay. The results suggested that GAL alleviated alcohol-induced steatosis,e as indicated by decreased hepatic and serum triglyceride levels in ethanol-fed mice. GAL treatment also correlated with a decrease in the Cd36 mRNA expression, thus potentially inhibiting the development of alcoholic steatosis via the hepatic de novo lipogenesis pathway. Furthermore, treatment with GAL inhibited the expression of cytochrome P450 2E1 and attenuated hepatocellular damage, as reflected by a reduction in ALT and AST levels. These findings suggest that GAL extracted from A. tegmentosum has the potential to serve as a bioactive agent for the treatment of alcoholic fatty liver and liver damage.

Inhibitory Activity of Wild-Simulated Ginseng against Non-Alcoholic Fatty Liver Disease in HepG-2 Cells (산양삼(Wild-Simulated Ginseng)의 비알코올성 지방간 억제활성)

  • So Jung Park;Yurry Um;Min Yeong Choi;Jin Boo Jeong
    • Korean Journal of Plant Resources
    • /
    • v.36 no.1
    • /
    • pp.26-31
    • /
    • 2023
  • In this study, we investigated in vitro inhibitory activity of wild-simulated ginseng (WSG) against non-alcoholic fatty liver disease using HepG-2 cells. T0901317 treatment increased the lipid accumulation in HepG-2 cells, but WSG treatment inhibited T0901317-mediated lipid accumulation. In addition, WSG downregulated T0901317-mediated expression of SREBP-1c, ACC, FAS and SCD-1 protein. In addition, WSG increased the phosphorylation level of LKB1 and AMPK. Compound C treatment blocked WSG-mediated downregulation of SREBP-1c protein. In conclusion, WSG is considered to inhibit the accumulation of lipids and triglycerides in HepG-2 cells by inducing the activation of LKB1 and AMPK successively, thereby reducing the expression of FAS, ACC, and SCD-1 through suppression of SREBP-1c expression.