DOI QR코드

DOI QR Code

Medicinal herb extracts ameliorate impaired growth performance and intestinal lesion of newborn piglets challenged with the virulent porcine epidemic diarrhea virus

  • Kim, Hyeun Bum (Department of Animal Resource and Science, Dankook University) ;
  • Lee, Chul Young (Regional Animal Industry Center, Gyeongnam National University of Science and Technology) ;
  • Kim, Sung Jae (Department of Veterinary Pathology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • Han, Jeong Hee (Department of Veterinary Pathology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • Choi, Keum Hwa (Department of Complementary and Alternative Medicine, College of Veterinary Medicine, University of Minnesota)
  • Received : 2015.05.26
  • Accepted : 2015.08.28
  • Published : 2015.10.31

Abstract

The objective of this study was to evaluate effects of a combined use of extracts of medicinal herbs Taraxaumi mongolicum, Viola yedoensis Makino, Rhizoma coptidis, and Radix isatidis (MYCI) on porcine epidemic diarrhea (PED). Twenty-two 3-day-old piglets received an oral challenge with $3{\times}10^{3.5}$ $TCID_{50}$ of the virulent PED virus (PEDV) in PBS or PBS only and daily oral administration of 60 mg of the MYCI mixture suspended in milk replacer or the vehicle for 7 days in a $2{\times}2$ factorial arrangement of treatments. Average daily gain (ADG) increased (p < 0.05) in response to the MYCI treatment in the PEDV-challenged piglets (-18 vs. 7 g for the vehicle- vs. MYCI-administered group), but not in unchallenged animals (27 vs. 28 g). Diarrhea score and fecal PEDV shedding, however, were not influenced by the MYCI treatment. The PEDV challenge caused severe intestinal villus atrophy and crypt hyperplasia, both of which were alleviated by administration of the MYCI mixture as indicated by an increase in the villus height and a decrease in the crypt depth due to the treatment. Overall, medicinal herb extracts used in this study ameliorated impaired growth performance and intestinal lesion of newborn piglets challenged with the virulent PEDV. Therefore, our results suggest that the MYCI mixture could be used as a prophylactic or therapeutic agent against PED.

Keywords

Acknowledgement

Supported by : Kangwon National University

References

  1. Murphy FA, Gibbs EPJ, Horzinek MC, Studdert MJ. Veterinary Virology. 3rd ed. London: Academic press;1999. p. 23-42.
  2. Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev. 2005;69(4):635-64. https://doi.org/10.1128/MMBR.69.4.635-664.2005
  3. Oh JS, Song DS, Yang JS, Song JY, Moon HJ, Kim TY, et al. Comparison of an enzyme-linked immunosorbent assay with serum neutralization test for serodiagnosis of porcine epidemic diarrhea virus infection. J Vet Sci. 2005;6(4):349-52.
  4. Debouck P, Pensaert M. Experimental infection of pigs with a new porcine enteric coronavirus, CV 777. Am J Vet Res. 1980;41(2):219-23.
  5. Park SJ, Song DS, Park BK. Molecular epidemiology and phylogenetic analysis of porcine epidemic diarrhea virus (PEDV) field isolates in Korea. Arch Virol. 2013;158(7):1533-41. https://doi.org/10.1007/s00705-013-1651-5
  6. Song D, Park B. Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines. Virus Genes. 2012;44(2):167-75. https://doi.org/10.1007/s11262-012-0713-1
  7. Kim O, Chae C. Application of reverse transcription polymerase chain reaction to detect porcine epidemic diarrhea virus in Vero cell culture. J Vet Diagn Invest. 1999;11(6):537-8. https://doi.org/10.1177/104063879901100610
  8. Pansaert MB, DeBouck PA. A new coronavirus-like particle associated with diarrhea in swine. Arch Virol. 1978;58:243-7. https://doi.org/10.1007/BF01317606
  9. Briskin DP. Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiol. 2000;124(2):507-14. https://doi.org/10.1104/pp.124.2.507
  10. Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev. 1999;12(4):564-82.
  11. Jassim SA, Naji MA. Novel antiviral agents: a medicinal plant perspective. J Appl Microbiol. 2003;95(3):412-27. https://doi.org/10.1046/j.1365-2672.2003.02026.x
  12. Wu CJ, Jan JT, Chen CM, Hsieh HP, Hwang DR, Liu HW, et al. Inhibition of severe acute respiratory syndrome coronavirus replication by niclosamide. Antimicrob Agents Chemother. 2004;48(7):2693-6. https://doi.org/10.1128/AAC.48.7.2693-2696.2004
  13. Lu HM, Liang YZ, Yi LZ, Wu XJ. Anti-inflammatory effect of Houttuynia cordata injection. J Ethnopharmacol. 2006;104(1-2):245-9. https://doi.org/10.1016/j.jep.2005.09.012
  14. Kim O, Chae C. Comparison of reverse transcription polymerase chain reaction, immunohistochemistry, and in situ hybridization for the detection of porcine epidemic diarrhea virus in pigs. Can J Vet Res. 2002;66(2):112-6.
  15. Kim HY, Shin HS, Park H, Kim YC, Yun YG, Park S, et al. In vitro inhibition of coronavirus replications by the traditionally used medicinal herbal extracts, Cimicifuga rhizoma, Meliae cortex, Coptidis rhizoma, and Phellodendron cortex. J Clin Virol. 2008;41(2):122-8. https://doi.org/10.1016/j.jcv.2007.10.011
  16. Han H, He W, Wang W, Gao B. Inhibitory effect of aqueous Dandelion extract on HIV-1 replication and reverse transcriptase activity. BMC Complement Altern Med. 2011;11(112-6882):11-112. https://doi.org/10.1186/1472-6882-11-11
  17. Park KJ. Evaluation of in vitro antiviral activity in methanol extracts against influenza virus type A from Korean medicinal plants. Phytother Res. 2003;17:1059-63. https://doi.org/10.1002/ptr.1330
  18. Shi S, Zhao Y, Zhou H, Zhang Y, Jiang X, Huang K. Identification of antioxidants from Taraxacum mongolicum by high-performance liquid chromatography-diode array detection-radical-scavenging detection-electrospray ionization mass spectrometry and nuclear magnetic resonance experiments. J Chromatogr A. 2008;1209(1-2):145-52. https://doi.org/10.1016/j.chroma.2008.09.004
  19. Li C, Chu IC, Liao HF. Investigating the immunomodulatory effects of Chinese herbs on mouse. J Immunol. 2009;182:43.16.
  20. Xie C, Kokubun T, Houghton PJ, Simmonds MS. Antibacterial activity of the Chinese traditional medicine, Zi Hua Di Ding. Phytother Res. 2004;18(6):497-500. https://doi.org/10.1002/ptr.1497
  21. Chin LW, Cheng YW, Lin SS, Lai YY, Lin LY, Chou MY, et al. Anti-herpes simplex virus effects of berberine from Coptidis rhizoma, a major component of a Chinese herbal medicine, Ching-Wei-San. Arch Virol. 2010;155(12):1933-41. https://doi.org/10.1007/s00705-010-0779-9
  22. Kong WJ, Zhao YL, Xiao XH, Wang JB, Li HB, Li ZL, et al. Spectrum-effect relationships between ultra performance liquid chromatography fingerprints and anti-bacterial activities of Rhizoma coptidis. Anal Chim Acta. 2009;634(2):279-85. https://doi.org/10.1016/j.aca.2009.01.005
  23. Shin EK, Kim DH, Lim H, Shin HK, Kim JK. The anti-inflammatory effects of a methanolic extract from Radix Isatidis in murine macrophages and mice. Inflammation. 2010;33(2):110-8. https://doi.org/10.1007/s10753-009-9164-9
  24. Chen X, Wang Z, Yang Z, Wang J, Xu Y, Tan RX, et al. Houttuynia cordata blocks HSV infection through inhibition of NF-kappaB activation. Antiviral Res. 2011;92(2):341-5. https://doi.org/10.1016/j.antiviral.2011.09.005
  25. Zhao YL, Wang JB, Shan LM, Jin C, Ma L, Xiao XH. Effect of Radix isatidis polysaccharides on immunological function and expression of immune related cytokines in mice. Chin J Integr Med. 2008;14(3):207-11. https://doi.org/10.1007/s11655-008-0207-2
  26. Kwon CH, Lee CY, Han SJ, Kim SJ, Park BC, Jang I, et al. Effects of dietary supplementation of lipid-encapsulated zinc oxide on colibacillosis, growth and intestinal morphology in weaned piglets challenged with enterotoxigenic Escherichia coli. Anim Sci J. 2014;85(8):805-13. https://doi.org/10.1111/asj.12215
  27. Vlasova AN, Marthaler D, Wang Q, Culhane MR, Rossow KD, Rovira A, et al. Distinct characteristics and complex evolution of PEDV strains, North America, May 2013-February 2014. Emerg Infect Dis. 2014;20(10):1620-8. https://doi.org/10.3201/eid2010.140491
  28. Lee JH, Park JS, Lee SW, Hwang SY, Young BE, Choi HJ. Porcine epidemic diarrhea virus infection: Inhibition by polysaccharide from Ginkgo biloba exocarp and mode of its action. Virus Res. 2014;195C:148-52.
  29. Madson DM, Magstadt DR, Arruda PH, Hoang H, Sun D, Bower LP, et al. Pathogenesis of porcine epidemic diarrhea virus isolate (US/Iowa/18984/2013) in 3-week-old weaned pigs. Vet Microbiol. 2014;174(1-2):60-8. https://doi.org/10.1016/j.vetmic.2014.09.002
  30. Kim O, Chae C. Experimental infection of piglets with a korean strain of porcine epidemic diarrhoea virus. J Comp Pathol. 2003;129(1):55-60. https://doi.org/10.1016/S0021-9975(02)00170-6
  31. Coussement W, Ducatelle R, Debouck P, Hoorens J. Pathology of experimental CV777 coronavirus enteritis in piglets. I. Histological and histochemical study. Vet Pathol. 1982;19(1):46-56. https://doi.org/10.1177/030098588201900108
  32. Naithani R, Huma LC, Holland LE, Shukla D, McCormick DL, Mehta RG, et al. Antiviral activity of phytochemicals: a comprehensive review. Mini Rev Med Chem. 2008;8(11):1106-33. https://doi.org/10.2174/138955708785909943
  33. Liu J, Zheng N, Liu M. A new inositol triester from Taraxacum mongolicum. Natural Product Research, Nat Prod Res. 2014;28(7):420-3. https://doi.org/10.1080/14786419.2013.867443
  34. Sun Y, Du L, Zhou L, Zhang W, Miao F, Yang X, et al. Study on antibacterial active components from Viola yedoensis. Zhongguo Zhongyao Zazhi. 2011;36(19):2666-71.
  35. YE W, LI X, CHENG J. screening of eleven chemical constituents from Radix isatidis for antiviral activity. Afr J Pharm and Pharmaco. 2011;5(16):1933-6.
  36. Shi SY, Zhou CX, Xu Y, Tao QF, Bai H, Lu FS, et al. Studies on chemical constituents from herbs of Taraxacum mongolicum. Zhongguo Zhong Yao Za Zhi. 2008;33(10):1147-57.

Cited by

  1. Nursery pig growth performance and tissue accretion modulation due to porcine epidemic diarrhea virus or porcine deltacoronavirus challenge vol.95, pp.1, 2017, https://doi.org/10.2527/jas.2016.1000
  2. Oral Immunization against PEDV with Recombinant Lactobacillus casei Expressing Dendritic Cell-Targeting Peptide Fusing COE Protein of PEDV in Piglets vol.10, pp.3, 2015, https://doi.org/10.3390/v10030106
  3. Manipulation of Intestinal Antiviral Innate Immunity and Immune Evasion Strategies of Porcine Epidemic Diarrhea Virus vol.2019, pp.None, 2015, https://doi.org/10.1155/2019/1862531
  4. Development of a Model of Porcine Epidemic Diarrhea in Microminipigs vol.56, pp.5, 2015, https://doi.org/10.1177/0300985819839236
  5. Evaluation of antiviral activity of Bacillus licheniformis-fermented products against porcine epidemic diarrhea virus vol.9, pp.1, 2015, https://doi.org/10.1186/s13568-019-0916-0
  6. Plants Metabolites: Possibility of Natural Therapeutics Against the COVID-19 Pandemic vol.7, pp.None, 2015, https://doi.org/10.3389/fmed.2020.00444
  7. Damage to intestinal barrier integrity in piglets caused by porcine reproductive and respiratory syndrome virus infection vol.52, pp.1, 2021, https://doi.org/10.1186/s13567-021-00965-3