• Title/Summary/Keyword: Korean high speed train

Search Result 1,680, Processing Time 0.038 seconds

The Fatigue Life Evaluation of Rail on the Concrete Track of High Speed Railway by Analysis of the Vehicle/Track Interaction (차량/궤도 상호작용해석을 통한 고속철도 콘크리트궤도 레일의 피로수명 예측)

  • Lim, Hyoung-Jun;Sung, Deok-Yong;Park, Yong-Gul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6D
    • /
    • pp.663-671
    • /
    • 2012
  • The demand of CWR is rapidly increasing because of the adaptation of concrete track, the need for rapid and comfortable ride, and the reduction of maintenance cost. Because of short applying period of the concrete track, there is not a case of CWR fracture in Korea caused by repeated load of the train, which makes it difficult to calculate replacement period of rail based on rail fatigue life using an actual field data. This study thus inspected the bending stress at rail bottom through analyzing the vehicle/track interaction, performed multiple regression analysis on the data, deducted the bending stress prediction equations by the speed and the surface irregularity. Finally, the fatigue life of CWR on the concrete track was predicted based on the prediction equations for bending stress at rail bottom.

Bead Visualization Using Spline Algorithm (스플라인 알고리즘을 이용한 비드 가시화)

  • Koo, Chang-Dae;Yang, Hyeong-Seok;Kim, Maeng-Nam
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.54-58
    • /
    • 2016
  • In this research paper, suggest method of generate same bead as an actual measurement data in virtual welding conditions, exploit morphology information of the bead that acquired through robot welding. It has many multiple risk factors to Beginners welding training, by we make possible to train welding in virtual reality, we can reduce welding training risk and welding material to exploit bead visualization algorithm that we suggest so it will be expected to achieve educational, environmental and economical effect. The proposed method is acquire data to each case performing robot welding by set the voltage, current, working angle, process angle, speed and arc length of welding condition value. As Welding condition value is most important thing in decide bead form, we would selected one of baseline each item and then acquired metal followed another factors change. Welding type is FCAW, SMAW and TIG. When welding trainee perform the training, it's difficult to save all of changed information into database likewise working angle, process angle, speed and arc length. So not saving data into database are applying the method to infer the form of bead using a neural network algorithm. The way of bead's visualization is applying the spline algorithm. To accurately represent Morphological information of the bead, requires much of morphological information, so it can occur problem to save into database that is why we using the spline algorithm. By applying the spline algorithm, it can make simplified data and generate accurate bead shape. Through the research paper, the shape of bead generated by the virtual reality was able to improve the accuracy when compared using the form of bead generated by the robot welding to using the morphological information of the bead generated through the robot welding. By express the accurate shape of bead and so can reduce the difference of the actual welding training and virtual welding, it was confirmed that it can be performed safety and high effective virtual welding education.

Effects of Composition of Metallic Friction Materials on Tribological Characteristics on Sintered Metallic Brake Pads and Low-Alloy Heat-Resistance Steel for Trains (철도차량용 금속계 소결마찰재의 조성에 따른 트라이볼로지 특성)

  • Yang, Yong Joon;Lee, Hi Sung
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.330-336
    • /
    • 2014
  • Sintered metallic brake pads and low alloy heat resistance steel disks are applied to mechanical brake systems in high energy moving machines that are associated with recently developed 200km/h trains. This has led to the speed-up of conventional urban rapid transit. In this study, we use a lab-scale dynamometer to investigate the effects of the composition of friction materials on the tribological characteristics of sintered metallic brake pads and low alloy heat resistance steel under dry sliding conditions. We conduct test under a continuous pressure of 5.5 MPa at various speeds. To determine the optimal composition of friction materials for 200 km/h train, we test and the evaluate frictional characteristics such as friction coefficients, friction stability, wear rate, and the temperature of friction material, which depend on the relative composition of the Cu-Sn and Fe components. The results clearly demonstrate that the average friction coefficient is lower for all speed conditions, when a large quantity of iron power is added. The specimen of 25 wt% iron powder that was added decreased the wear of the friction materials and the roughness of the disc surface. However when 35 wt% iron powder was added, the disc roughness and the wear rate of friction materials increased By increasing the amount of iron powder, the surface roughness, and temperature of the friction materials increased, so the average friction coefficients decreased. An oxidation layer of $Fe_2O_3$ was formed on both friction surfaces.

QUANTITATIVE MONITORING OF TISSUE OXYGENATION BY TIME-RESOLVED SPECTROSCOPY

  • Yamashita, Yutaka;Oda, Motoki;Ohmae, Etsuko;Tsuchiya, Yutaka
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.2101-2101
    • /
    • 2001
  • Near-infrared spectroscopy is now being used in clinical diagnosis as a non-invasive monitor of tissue oxygenation state. However, due to lack of the optical pathlength information within tissues, it is still difficult to quantitate the hemoglobin concentration with present CW techniques. Time-resolved spectroscopy (TRS), which measures temporal profiles of emerging light from tissues, enables to estimate the pathlength distribution within tissues by converting time to distance. Consequently, quantitative measurement of tissue oxygenation is possible by analyzing the data with optical diffusion equation 1) or our Microscopic Beer-Lambert law2). Time-Resolved Spectroscopy System : TRS-1O3) Our TRS-10 system consists of a three-wavelength (759, 797, 833 nm) PLP as pulsed light source, a high speed PMT with high sensitivity and three signal-processing circuits for time-resolved measurement (CFD/TAC, A/D converter and histogram memory). Optical pulse train consisting of 759, 797 and 833nm is generated by PLP at 5㎒ repetition rate and irradiated a sample through a single optical fiber. The diffuse-reflected light from the sample is collected by a bundle fiber and then detected by the PMT for single photon measurement. After being amplified by a following fast amplifier, the electrical signals for each wavelength are picked out by CFD/TAC module. Then, a signal processing circuit integrated the TRS data for each wavelength individually. The simultaneous TRS measurement for three wavelengths achieved without any optical or mechanical switch. Experiment and Results Input and detection fibers of TRS-10 were attached at the human forehead with a fiber separation of 3cm. TRS measurements were continuously performed for about 20 minutes including 2 minutes hyper ventilation. It was observed that the total hemoglobin concentration was decreasing during the hyper ventilation and recovered until 2 minutes after hyper ventilation. On the other hand, the deoxy-hemoglobin concentration began to increase after hyper ventilation and had its peak at around 2 minute later, showing 502 drop from 75% to 60% due to inhibition of breathing by performing hyper ventilation. The results showed that this system might be able to quantitate the concentrations of oxy- and deoxy-hemoglobin in the human brain.

  • PDF

Evaluation of Curving Performance and Running Safety of New High-Power Electric Locomotive (신형 고출력 전기기관차의 곡선추종성 및 주행안전성 평가)

  • Ham, Young Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.827-832
    • /
    • 2013
  • In this study, curve responsiveness was assessed based on the lateral force and running safety was evaluated based on the wheel unloading ratio and derailment coefficient, which is the ratio of the wheel load and the lateral force. The evaluation of the curving performance and running safety of the new high-power electric locomotive showed that the derailment coefficient appeared higher when the wheel-set was set to the front of the train instead of being placed backward, and the maximum value of the derailment coefficient was recorded as 0.572 on the Gyeongbu line. Furthermore, the lateral force increased in curved sections, and it appeared to be proportional to the curve radius. Meanwhile, a maximum axis lateral force of 77.6 kN was recorded on the Taebaek line, and the wheel unloading ratio was 47.6% on the Yeongdong line. Finally, the running safety at the maximum speed as well as the through-curve performance of the curve radius satisfied the required standards.

A Study on Database System for Hostorical Booking of Korean Railroad (한국철도의 예약실적 데이터베이스 시스템에 관한 연구)

  • Oh, Seog-Moon;Hwang, Jong-Gyu;Hyeon, Seung-Ho;Kim, Yong-Gyu;Lee, Jong-Woo;Kim, Young-Hoon;Hong, Soon-Heum;Park, Jong-Bin
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.371-374
    • /
    • 1998
  • The construction of the transportation history database system is to serve the scheduling and seat inventory controling. Recently, lots of countries have been faced with the advance era because of the new railway transportation system, like the high speed railway and/or magnetic levitation vehicle system. This can be reasonably translated as those of operators are willing to provide the more various and high quality schedule to the customer. Those operators these ideas make possible to forecast that scheduling process is going to be complicated more and more. The seat inventory control, so to speak Yield Management System(YMS), goes a long way to improve the total passenger revenue at the railway business. The YMS forecasts the number of the last reservation value(DCP# END) and recommends the optimal values on the seat sales. The history database system contains infra-data(ie, train, seat, sales) that will be the foundation of scheduling and seat inventory control application programs. The development of the application programs are reserved to the next step. The database system is installed on the pc platform (IBM compatible), using the DB2(RDBMS). And at next step, the platform and DBMS will be considered whether they can meet the users' requirement or not.

  • PDF

Flow Visualization of Oscillation Characteristics of Liquid and Vapor Flow in the Oscillating Capillary Tube Heat Pipe

  • Kim, Jong-Soo;Kim, Ju-Won;Jung, Hyun-Seok
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1507-1519
    • /
    • 2003
  • The two-phase flow patterns for both non-loop and loop type oscillating capillary tube heat pipes (OCHPs) were presented in this study. The detailed flow patterns were recorded by a high-speed digital camera for each experimental condition to understand exactly the operation mechanism of the OCHP. The design and operation conditions of the OCHP such as turn number, working fluid, and heat flux were varied. The experimental results showed that the representative flow pattern in the evaporating section of the OCHP was the oscillation of liquid slugs and vapor plugs based on the generation and growth of bubbles by nucleate boiling. As the oscillation of liquid slugs and vapor plugs was very speedy, the flow pattern changed from the capillary slug flow to a pseudo slug flow near the annular flow. The flow of short vapor-liquid slug-train units was the flow pattern in the adiabatic section. In the condensing section, it was the oscillation of liquid slugs and vapor plugs and the circulation of working fluid. The oscillation flow in the loop type OCHP was more active than that in the non-loop type OCHP due to the circulation of working fluid in the OCHP. When the turn number of the OCHP was increased, the oscillation and circulation of working fluid was more active as well as forming the oscillation wave of long liquid slugs and vapor plugs in the OCHP. The oscillation flow of R-142b as the working fluid was more active than that of ethanol and the high efficiency of the heat transfer performance of R -142b was achieved.

Transmission Techniques for Downlink Multi-Antenna MC-CDMA Systems in a Beyond-3G Context

  • Portier Fabrice;Raos Ivana;Silva Adao;Baudais Jean-Yves;Helard Jean-Francois;Gameiro Atilio;Zazo Santiago
    • Journal of Communications and Networks
    • /
    • v.7 no.2
    • /
    • pp.157-170
    • /
    • 2005
  • The combination of multiple antennas and multi-carrier code division multiple-access (MC-CDMA) is a strong candidate for the downlink of the next generation mobile communications. The study of such systems in scenarios that model real-life trans-missions is an additional step towards an optimized achievement. We consider a realistic MIMO channel with two or four transmit antennas and up to two receive antennas, and channel state information (CSI) mismatches. Depending on the mobile terminal (MT) class, its number of antennas or complexity allowed, different data-rates are proposed with turbo-coding and asymptotic spectral efficiencies from 1 to 4.5 bit/s/Hz, using three algorithms developed within the European IST-MATRICE project. These algorithms can be classified according to the degree of CSI at base-station (BS): i) Transmit space-frequency prefiltering based on constrained zero-forcing algorithm with complete CSI at BS; ii) transmit beamforming based on spatial correlation matrix estimation from partial CSI at BS; iii) orthogonal space-time block coding based on Alamouti scheme without CSI at BS. All presented schemes require a reasonable complexity at MT, and are compatible with a single-antenna receiver. A choice between these algorithms is proposed in order to significantly improve the performance of MC-CDMA and to cover the different environments considered for the next generation cellular systems. For beyond-3G, we propose prefiltering for indoor and pedestrian microcell environments, beamforming for suburban macrocells including high-speed train, and space-time coding for urban conditions with moderate to high speeds.

KTX Impact on the Inter-Regional Transportation System (고속철도 개통후 지역간 교통체계의 변화)

  • Lee, Jin-Seon;Kim, Gyeong-Tae
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.2
    • /
    • pp.75-82
    • /
    • 2005
  • To relieve congestion in the current system of intercity transportation, the Korea decided in 1990 to construct a high-speed railroad between Seoul and Busan and it is now in operation. This new mode of transportation significantly cut travel time between major cities and a trip from Seoul to the southeastern port of Busan. Since the KTX opening, average daily passenger numbers on both the Gyeongbu and Honam lines have increased about 1.3 fold over 2003 levels. As of December 2004, the KTX trains are carrying about 81,000 people a day. On KTX routes, the daily number of airline passengers dropped. Express long-distance bus traffic also dropped by 20% to 30%, while that on short-distance routes (100km or less) increased by about 20%. These figures clearly indicate that the Korean transportation network is becoming railroad-centric. However, the number of KTX passengers is fewer than anticipated possibly due to the Korean economic downturn and the operation of the KTX will leave many existing Saemaul and Mugunghwa train sets idle, which will be put into operation for areas, not covered by the KTX. When all the existing major lines have been electrified, more high-speed rail services will be phased in using direct connections to maximize operational efficiency. And also, the dual management by KTX and conventional rail will be regarded as the promotion of the benefit of the public.

Railway Line Planning Considering the Configuration of Lines with Various Halting Patterns (다양한 정차 패턴을 고려한 열차 노선계획의 수립)

  • Park, Bum-Hwan;Oh, Seog-Moon;Hong, Soon-Heum;Moon, Dae-Seop
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.6 s.84
    • /
    • pp.115-125
    • /
    • 2005
  • The line planning problem is to determine the origin and destination stations of the lines with their frequencies so as to meet the OD demands. Since the advent of high speed trains, Korea railway is confronted with the urgent difficulty to reconstruct the line configuration with the frequencies of each line and each fleet type so the demands could be newly created as well as satisfied. Furthermore. the existing trains except the high speed trains suffer from a longer traveling time than before. Now, to reduce the passenger traveling time, the trains with the various halting patterns are run in the same line. Therefore, it is necessary to develop a new line planning model to consider the various halting patterns. Most of studies find the frequencies of each lines which meet the link traffic loads or minimum link frequencies. But these are based on the assumption of all stop patterns. Furthermore, it is not easy to include the actual constraints as like the minimum number of stops at a station, the maximum number of stops or a train, etc. We develop the line planning model considering not only the various halting patterns but also the actual constraints which is based on the multicommodity network flow model with the additional constraints.