• Title/Summary/Keyword: Korean ground motion

Search Result 621, Processing Time 0.025 seconds

The Study on the Parameters to Represent the Characteristics of the Observed Ground motions (국내 관측 지진파형을 이용한 지진파형 영향인자에 관한 연구)

  • 김준경
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.44-48
    • /
    • 2000
  • Several parameters to represent the characteristics of the observed at the domestic networks from several earthquakes occurred in the Korean Peninsula. Parameters to fit most the multiple Fourier amplitude spectra of the observed accelerations are estimated. This study adopts the stochastic ground motion model referred to the BLWN mode in which the energy is distributed randomly over the duration of the source and which has proven to be very effective in modeling a wide range of ground motion observations. The stochastic ground motion model employed here uses an omega-squared ({{{{ omega ^2 }}) Brune source model with a single corner frequency and a constant stress drop,. The {{{{ omega ^2 }} source model has become a seismological standard because of its simplicity an ability to predict spectral amplitudes and shapes over an extremely broad ranges of magnitudes distances and from the inversion show very unstable based on the fact of high values of mean/median. These results may imply that more observed data and more precise site classification including accurate preparation analysis of data such as more accurate scaling from counts to kine are needed for more stable are effective inversion of Fourier amplitude spectrum of the observed ground motions.

  • PDF

Estimation of Ground Response Characteristics by Microtremor (미세진동 측정을 통한 지반응답특성 평가)

  • Joh sung-ho;Lee il-wha;Ko hak-song
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.718-721
    • /
    • 2005
  • The purpose of the study is to evaluate the usage of microtremor in estimation of subsurface structure and ground response to ground motion. Ground motion amplification based on site condition of an area is an important parameter for dynamic design. Microtremor cover the characteristics in a low frequency range, while forced vibrations cover them in a high-frequency range. Microtremor consider ground characteristics and offer transfer function in area. To determine the dominant frequency, the passive microtremor measurement is performed and to determine the transfer function of test site, active microtremor measurement is performed. Microtremor measurement in the site is compared with theoretical transfer function calculated from the known structures.

  • PDF

Dynamic Analysis of Ground Motion During Earthquake in the Bangkok Area (지진시 방콕지역의 지반운동에 대한 동력학적 연구)

  • 김상환
    • Geotechnical Engineering
    • /
    • v.1 no.1
    • /
    • pp.13-20
    • /
    • 1985
  • In this paper, earthquake response of the Bangkok area in Thailand was analyzed in terms of the acceleration response spectrum and maximum acceleration of the computed surface motions. The program SHAKE was employed to analyse the ground motion. With increasing the maximum acceleration and predominant period of given base rock motion, the computed maximum ground surface acceleration increases. but converges on a maximum value of about 0.39. The characteristics of earthquake response spectrum in the Bangkok area are also discussed and illustrated.

  • PDF

Selection of Presentable Seismic Ground Motion Scenario through Deaggregation (Deaggregation을 통한 대표지진시나리오 선정)

  • Kwak, Dong-Yeop;Yun, Se-Ung;Park, Du-Hee
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.261-263
    • /
    • 2008
  • Determining the most likelihood earthquake scenario in one region is very important for performing an earthquake-resistant design. The most likelihood earthquake scenario can be selected by performing deaggregation, who classifies earthquakes that occur ground motion exceeding a specific acceleration as each distance and each earthquake magnitude. If earthquakes are classified, the most likelihood earthquake scenario can be selected. Earthquake hazard analysis method that have to be performed before deaggregation follows the method that Ministry of Construction & Transportation presented. As a result of performing deaggregation at longitude 127.35 and latitude 34.7, presentable seismic ground motion scenarios can be selected at each recurrence period.

  • PDF

The Biomechanical Comparison of Running Shoes According to the Difference of Insole (인솔 차이에 따른 런닝화의 운동역학적 비교)

  • Jin, Young-Wan;Shin, Sung-Hwon
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.51-59
    • /
    • 2007
  • These studies show that I applied to functional insole (a specific A company) for minimizing shocks and sprain people's ankle arising from running. How to an effect on human body which studied a kinematics and kinetics from 10 college students during experiments. This study imposes several conditions by barefoot, normal running shoes and put functional insole shoes ran under average $2.0{\pm}0.24\;m$/sec by motion analysis and ground reaction force that used to specific A company. First of all, motion analysis was caused by achilles tendon angle, angle of the lower leg, angle of the knee, initial sole angle and barefoot angle. The result of comparative analysis can be summarized as below. Motion analysis showed that statically approximates other results from achilles tendon angle (p<.01), initial ankle angle(p<.05), initial sole angle(p<.001) and barefoot angle(p<.001). Ground reaction force also showed that statically approximates other results from impact peak timing (p<.001), Maximum loading rate(p<.001), Maximum loading rate timing (p<.001) and impulse of first 20 percent (p<.001). Above experiment values known that there was statically difference between Motion analysis and Ground reaction force under absorbing of the functional insole shoes which was not have an effect on our body for kinetics and kinematics.

The Biomecanical Analysis of Taekwondo Footwear (태권도화의 운동역학적 분석)

  • Jin, Young-Wan;Kawk, Yi-Sub
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.105-114
    • /
    • 2007
  • The purpose of this study was to compare the biomechanical difference of barefoot and two types taekwondo footwear. which will provide scientific data to coaches and players, to further prevent injuries and to improve each players skills. How to an effect on human body which studied a kinematics and kinetics from 8 college students during experiments. This study imposes several conditions by barefoot and two types of taekwondo footwear ran under average $2.56{\pm}0.21\;m$/sec by motion analysis, ground reaction force and electromyography that used to specific A company. First of all, motion analysis was caused by achilles tendon angle, angle of the lower leg, angle of the knee. The result of comparative analysis can be summarized as below. Motion analysis showed that statically approximates other results from achilles tendon angle (p<.01), initial ankle angle(p<.05), initial sole angle(p<.001) and barefoot angle(p<.001). Ground reaction force also showed that statically approximates other results from impact peak timing (p.001), Maximum loading rate(p<.001), Maximum loading rate timing (p<.001) and impulse of first 20 percent (p<.001). showed that averagely was distinguished from other factors, and did not show about that.

Seismic Behavior of 3-Story Steel Frame Structures Subjected to Ground Motions (지진동을 받는 3층 강재 프레임 구조물의 지진 거동)

  • Hu, Jongwan;Cha, Youngwook
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.383-394
    • /
    • 2016
  • This study is intended to predict the seismic behavior of the down-scaled 3-story steel frame structures subjected to the real ground motion, and evaluate their structural damage through advanced finite element (FE) analysis results. The FE frame models are designed by considering the effect of the soft story. In addition, the effect of structural asymmetry is also taken into consideration during the nonlinear dynamic analyses. After observing the analysis results, it is reconfirmed that the damage of the steel frame building under the ground motion should be governed by the soft story column rather than the structural mass asymmetry.

Ground Resonance Instabilities Analysis of a Bearingless Helicopter Main Rotor (무베어링 헬리콥터 로터의 지상공진 불안정성 특성 해석)

  • Yun, Chul-Yong;Kee, Young-Jung;Kim, Tae-Joo;Kim, Deog-Kwan;Kim, Seung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.352-357
    • /
    • 2012
  • The ground resonance instability of a helicopter with bearingless main rotor hub were investigated. The ground resonance instability is caused by an interaction between the blade lag motion and hub inplane motion. This instability occurs when the helicopter is on the ground and is important for soft-inplane rotors where the rotating lag mode frequency is less than the rotor rotational speed. For the analysis, the bearingless rotor was composed of blades, flexbeam, torque tube, damper, shear restrainer, and pitch links. The fuselage was modeled as a mass-damper-spring system having natural frequencies in roll and pitch motions. The rotor-fuselage coupling equations are derived in non-rotating frame to consider the rotor and fuselage equations in the same frame. The ground resonance instabilities for three cases where are without lead-lag damper and fuselage damping, with lead-lag damper and without fuselage damping, and finally with lead-lag damper and fuselage damping. There is no ground resonance instability in the only rotor-fuselage configuration with lead-lag damper and fuselage damping.

Off-road tractive performance of tracked vehicles and the effects of soil parameters (궤도차량의 야지기동성 평가와 토지특성의 영향)

  • 김진우
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.76-84
    • /
    • 1991
  • The off-road tractive performance of tracked vehicles can be evaluated in terms of soil thrust, motion resistance and drawbar pull. The ability to predict accurately ground pressure distribution under track is of importance since the vehicle sinkage and motion resistance are closely related to it. While the formulation of the method for predicting ground pressure distribution follows closely in spirit the ideas outlined for the terrain with linear pressure- sinkage relation case by Garber and Wong, the analysis of various terrain stiffness is magnified by numerical implementation procedure. The effects of soil parameters on tractive forces can be introduced through the terrain-track interaction such as pressure-sinkage and shearing characteristics. It is illustrated by determining the drawber pull-slip relation and corresponding ground pressure distribution for the terrains typically chosen and by comparing the results with the conventional ones based on normal ground pressure. The factorial experiment method is finally adopted for checking the sensitivity of the values of soil parameters on the drawbar pull.

  • PDF

Experimental Analysis of the Ground Take-off Flight of a Butterfly (지면이륙하는 나비의 날개짓 분석)

  • Jang, Young-Il;Lee, Sang-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.142-143
    • /
    • 2008
  • In the present work, high-speed video images of the ground take-off flight of a live butterfly were captured and their dynamic motions during the first full-stroke were analyzed. To capture the dynamic images of the take-off motion, the experimental setup consisted of a high-speed camera, a Xenon lamp as a light source and a transparent chamber of $15^W{\times}15^L{\times}17^H$ $cm^3$ in physical size. The ambient temperature and supplementary lighting devices were precisely controlled. The weight and wing span of the butterfly tested in this study was 104 mg and 63.14 mm, respectively. The ground take-off images were captured with 4000 fps with a spatial resolution of (1024${\times}$512) pixels. The period of the first full-stroke was 80.5ms and the flapping speed of downstroke was 2 times faster than that of upstroke. As a result, butterflies used the fling and near-clap motion to generate lifting force and an interesting take-off behavior of early pronation and downstroke was observed.

  • PDF