• Title/Summary/Keyword: Korean granite

Search Result 1,563, Processing Time 0.031 seconds

Analysis of Rainfall Infiltration Velocity in Unsaturated Soils Under Both Continuous and Repeated Rainfall Conditions by an Unsaturated Soil Column Test (불포화토 칼럼시험을 통한 연속강우와 반복강우의 강우침투속도 분석)

  • Park, Kyu-Bo;Chae, Byung-Gon;Park, Hyuck-Jin
    • The Journal of Engineering Geology
    • /
    • v.21 no.2
    • /
    • pp.133-145
    • /
    • 2011
  • Unsaturated soil column tests were performed for weathered gneiss soil and weathered granite soil to assess the relationship between infiltration velocity and rainfall condition for different rainfall durations and for multiple rainfall events separated by dry periods of various lengths (herein, 'rainfall break duration'). The volumetric water content was measured using TDR (Time Domain Reflectometry) sensors at regular time intervals. For the column tests, rainfall intensity was 20 mm/h and we varied the rainfall duration and rainfall break duration. The unit weight of weathered gneiss soil was designed 1.21 $g/cm^3$, which is lower than the in situ unit weight without overflow in the column. The in situ unit weight for weathered granite soil was designed 1.35 $g/cm^3$. The initial infiltration velocity of precipitation for the two weathered soils under total amount of rainfall as much as 200 mm conditions was $2.090{\times}10^{-3}$ to $2.854{\times}10^{-3}$ cm/s and $1.692{\times}10^{-3}$ to $2.012{\times}10^{-3}$ cm/s, respectively. These rates are higher than the repeated-infiltration velocities of precipitation under total amount of rainfall as much as 100 mm conditions ($1.309{\times}10^{-3}$ to $1.871{\times}10^{-3}$ cm/s and $1.175{\times}10^{-3}$ to $1.581{\times}10^{-3}$ cm/s, respectively), because the amount of precipitation under 200 mm conditions is more than that under 100 mm conditions. The repeated-infiltration velocities of weathered gneiss soil and weathered granite soil were $1.309{\times}10^{-3}$ to $2.854{\times}10^{-3}$ cm/s and $1.175{\times}10^{-3}$ to $2.012{\times}10^{-3}$ cm/s, respectively, being higher than the first-infiltration velocities ($1.307{\times}10^{-2}$ to $1.718{\times}10^{-2}$ cm/s and $1.789{\times}10^{-2}$ to $2.070{\times}10^{-2}$ cm/s, respectively). The results reflect the effect of reduced matric suction due to a reduction in the amount of air in the soil.

Importance of Microtextural and Geochemical Characterizations of Soils on Landslide Sites (산사태지역 토층의 미세조직과 지화학적 특성의 중요성)

  • Kim Kyeong-Su;Choo Chang-Oh;Booh Seong-An;Jeong Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.15 no.4 s.42
    • /
    • pp.447-462
    • /
    • 2005
  • The purposes of this study are to evaluate and discuss the importance of geochemical properties of soil materials that play an important role in the occurrence of the landslide, using analyses of microtexture, particle size distribution, XRC, and FE-SEM equipped with energy dispersive spectrum on soils collected from landslide slopes of gneiss, granite and sedimentary rock areas. Soils from gneiss and granite areas where landslides took place have much clay content relative to those from non landslide areas, particularly pronounced in the granite area. Therefore the clay content is considered a sensitive factor on landslide. Clay minerals contained in soils are illite, chlorite, kaolinite and montmorillonite. Especially the content of clay minerals in soils from the Tertiary sedimentary rocks is highest, with abundant montmorillonite as expandable species. It is believed that this area was much vulnerable to landslide comparable to other areas because of its high content of monoorillonite, even though there might be weak precipitation. Since no conspicuous differentiation in mineralogy between the landslide area and non landslide area can be made, the occurrence of landslide may be influenced not by mineralogy, but by local geography and mechanical properties of soils. Geochemical information on weathering properties, mineralogy, and microtexture of soils is helpful to better understand the causes and patterns of landslide, together with engineering geological analyses.

Hydrochemistry and Distribution of Uranium and Radon in Groundwater of the Nonsan Area (논산지역 지하수중 우라늄과 라돈의 수리지질학적 특성과 정밀함량분포)

  • Cho, Byeong Wook;Kim, Moon Su;Kim, Tae Seung;Han, Jin Seok;Yun, Uk;Lee, Byeong Dae;Hwang, Jae Hong;Choo, Chang Oh
    • The Journal of Engineering Geology
    • /
    • v.22 no.4
    • /
    • pp.427-437
    • /
    • 2012
  • A total of 100 groundwater samples were collected from the Nonsan area and the behaviors of uranium and radon as natural radionuclides were investigated with respect to other physicochemical components in the groundwater in order to understand their occurrence, properties, and origins. Radionuclide levels were used to construct detailed concentration maps. The concentration of uranium ranges from 0 to 378 ${\mu}g/L$, with an average of 8.57 ${\mu}g/L$, standard deviation of 42.88 ${\mu}g/L$, and median of 0.56 ${\mu}g/L$. The correlation coefficient between uranium and radon is 0.42, whereas these radionuclides show no relation with other physicochemical components in groundwater. It is noteworthy that the uranium level in most samples (97% of the samples) is less than 30 ${\mu}g/L$, where the bedrock of the aquifer is granite or complex rocks located along the boundary between granite and metamorphic rocks. In the Okcheon metamorphic belt, the uranium concentration of most groundwater is less than 1 ${\mu}g/L$. Radon levels varies from 128 to 9,140 pCi/L, with an average of 2,186 pCi/L, standard deviation of 1,725 pCi/L, and median of 1,805 pCi/L. High radon levels (> 4,000 pCi/L) are most common in regions of Jurassic granite, whereas low radon areas are found in regions of sedimentary rock. In conclusion, the distribution and occurrence of radionuclides are intimately related to the basic geological characteristics of the rocks in which the radiogenic minerals are primarily contained.

Hydrogeologic and Hydrogeochemical Assessment of Water Sources in Gwanin Water Intake Plant, Pocheon (포천 관인취수장 수원에 대한 수리지질 및 수리지구화학적 평가)

  • Shin, Bok Su;Koh, Dong-Chan;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.3
    • /
    • pp.209-221
    • /
    • 2016
  • The section from water source to 2.6km upper stream of Hantan River is protected as the drinking water quality protection area according to guidelines of Ministry of Environment, because water source of the Gwanin water intake plant has been known the river. However, opinions were consistently brought up that the standard of water source protection zone must be changed with using underground water as water source because of contribution possibility of underground water as the water source of Gwanin water intake facility. In this regard, hydrogeologic investigation including resistivity survey and hydrogeochemical investigation were carried out to assess water source and infiltration of contaminant for the plant. Quaternary basaltic rocks (50m thick with four layers) covered most of the study area on the granite basement. As the result of the resistivity survey, it is revealed that permeable aquifer is distributed in the boundary of two layers: the basaltic layer with low resistivity; and the granite with high resistivity. Considering of outflow from Gwanin water intake facility, the area possessing underground water was estimated at least $5.7km^2$. The underground water recharged from Cheorwon plain was presumed to outflow along the surface of unconformity plane of basalt and granite. Based on field parameters and major dissolved constituents, groundwater and river water clearly distinguished and the spring water was similar to groundwater from the basaltic aquifer. Temporal variation of $SiO_2$, Mg, $NO_3$, and $SO_4$ concentrations indicated that spring water and nearby groundwater were originated from the basaltic aquifer and other groundwater from granitic aquifer. In conclusion, the spring of the Gwanin water intake plant was distinguished from river water in terms of hydrogeochemical characteristics and mainly contributed from the basaltic aquifer.

A Study on the Shear Characteristics of the Decomposed Granite Soils Using Direct Shear Test (직접전단시험(直接剪斷試驗)에 의한 화강토(花崗土)의 전단특성(剪斷特性)에 관(關)한 연구(硏究))

  • Lee, Dal Won;Kang, Yea Mook;Cho, Seong Seup
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.2
    • /
    • pp.227-242
    • /
    • 1986
  • This paper describes the observed behavior in the direct shear test on decomposed granite soil having the complicate engineering properties at various different levels of factors. The objectives of this study were to investigate the characteristics of the decomposed granite soil under controlled various moisture content, dry density, strain rate and soaking which give influence to the shear strength. The results were summarized as follows; 1. The shear strength was decreased remarkably with the increasing of moisture contents of A and B soil were 5-10% and 15-20% respectively. 2. Cohesion and angle of internal friction were decreased with the increasing of moisture content and increased with the increasing of dry density. 3. The shear strength was increased with the increasing of normal stress and volume change was decreased on the whole. The shear strength was generally increased with the increasing of the strain rate. 4. As dry density increases, A-soil shows the progressive failure and the decrease of volume change while B-soil shows the initial failure and the increase of volume change. 5. The relationships between the soaked and unsoaked specimens were as follows ; ${\tau}_f=0.1009+1.026{{\tau}_f}^*$ (A-soil), ${\tau}_f=0.1586+0.8005{{\tau}_f}^*$ (B-soil) 6. Angle of internal friction of the direct shear test shows larger value than that of the triaxial compression test. All effective stress path was nearly similar.

  • PDF

Influence of Microcracks in Geochang Granite on Brazilian Tensile Strength (거창화강암의 미세균열이 압열인장강도에 미치는 영향)

  • Park, Deok-Won
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.3
    • /
    • pp.193-208
    • /
    • 2021
  • The characteristics of the microcrack lengths(①), microcrack spacings(②) and Brazilian tensile strengths(③) related to the six directions of rock cleavages(H2~R1) in Geochang granite were analyzed. First, the 18 cumulative graphs for the above three major factors representing unique characteristics of the rock cleavages were made. Through the general chart for these graphs classified into three planes and three rock cleavages, the 28 parameters on the length, spacing and Brazilian tensile strength have been determined. The results of correlation analysis among these parameters are summarized as follows. Second, the above parameters were classified into six groups(I~VI) according to the sorting order on the magnitude of parameter values among three rock cleavages and three planes. The values of parameters belonging to group I and II are in order of R(rift) < G(grain) < H(hardway) and H < G < R. The values of the 8 parameters on the length of line(os2, 𝚫s, 𝚫L and oSmean), the exponent(λLmean and λSmean), the slope(amean) and the anisotropy coefficient (Anmean) are in order of R < G < H and H'(hardway plane) < G'(grain plane) < R'(rift plane). Third, the noticeable differences in distribution patterns among the six types of charts for three planes and three rock cleavages are as follows. From the chart for three planes, the values of 𝚫L, 𝚫s and 𝚫σt, corresponding to the distance between two points where the two fitting lines meet on the X-axis, increase in the order of R' < H' < G'. In particular, the two graphs of R2 and G2 related to the length and Brazilian tensile strength are almost parallel to each other and show the distribution characteristics of hardway plane. Among the graphs related to the Brazilian tensile strength, the overall shape for hardway plane is similar to that for grain. From the chart for three rock cleavages, the slopes of the graphs related to the length increase in the order of R < G < H, while those of the graphs related to the spacing and Brazilian tensile strength decrease in the order of R < G < H. Lastly, the characteristics of variation among the six rock cleavages, the three planes and the three rock cleavages were visualized through the correlation chart among the above parameters from this study.

A Study on Hydrogeological Characteristics of Deep-Depth Rock Aquifer by Rock Types in Korea (국내 암종별 고심도 암반대수층 수리지질특성 연구)

  • Hangbok Lee;Chan Park;Dae-Sung Cheon;Junhyung Choi;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.374-392
    • /
    • 2024
  • In order to successfully select a site for deep geological disposal of high-level radioactive waste, it is important to perform the stepwise approach along with the systematic selection and survey of evaluation parameters of geological environmental characteristics suitable for the domestic geological environment. In this study, we evaluated the characteristics of hydraulic conductivity, which is considered the most important evaluation parameter in the field of hydrogeology, targeting a deep-depth rock aquifer where actual disposal facilities are expected to be located. In particular, for the first time in Korea, we obtained in-situ pressure-flow data by directly conducting hydraulic tests in boreholes at depths ranging from 500 m to 750 m in various rock types distributed in Korea (granite/volcanic rock/gneiss/mudstone). And we derived hydraulic conductivity values by rock types and depth using verified analytical methods. For this purpose, precision hydraulic testing equipment developed in-house through this study was used, and detailed investigation procedures based on standard test methods were applied to field tests. As a result of the analysis, the average hydraulic conductivity value was found to be in the range of 10-9 m/s in all granite/volcanic rock/gneiss areas. In the mudstone area, an average hydraulic conductivity value of 10-11 m/s was derived, which was about 100 times (2 orders of magnitude) lower than that of the fractured rock aquifers. Moreover, permeability tended to slightly decrease with depth in fractured rock aquifers (granite and volcanic rock areas) containing many rock fractures. The gneiss area tended to have large local differences in permeability according to the composition of the stratum and the development of fracture zones rather than depth. In mudstone areas with weak fracture development, there was no significant variation in rock permeability according to depth. The hydraulic conductivity results by various rock types and depth presented in this study are expected to be utilized in building a foundational database for the site selection, design, and construction of disposal facilities in Korea.

Topographic Relief and Denudation Resistance by Geologic Type in the Southern Korean Peninsula (한반도 남부의 지질 유형별 지형 기복과 삭박 저항력)

  • Lee, Gwang-Ryul;Park, Chung-Sun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • This study tried to reveal relative surface denudation resistance and ranking by geologic types in the Southern Korean Peninsula using an 1:250,000 digital geologic map and ASTER GDEM. Among rock types such as igneous, sedimentary and metamorphic rocks, metamorphic rock showed the greatest resistance to surface denudation. The most resistant rock to surface denudation by geologic periods (e.g., the Precambrian, Paleozoic, Mesozoic and Cenozoic) was found from the Precambrian. Among the major tectonic settings in the Southern Korean Peninsula such as the Gyeonggi massif, Okcheon belt, Yeongnam massif, Gyeongsang basin and Pohang basin, the Okcheon belt indicated the greatest resistance. The most and least resistant rocks from the representative nine rocks in the Southern Korean Peninsula were Paleozoic limestone, and Cretaceous sedimentary rock and Cenozoic sedimentary rock, respectively. This study suggests that Paleozoic limestone, Cretaceous volcanic rock, Paleozoic sedimentary rock and Precambrian gneiss can be regarded as hard rocks with high elevation, steep slope and complicated relief, while soft rocks with low elevation, gentle slope and simple relief are Jurassic granite, Cretaceous sedimentary rock and Cenozoic sedimentary rock.

Long Term Stability of Slopes Excavated in Weathered Granite Rock Masses Subjected to Extreme Climatic Conditions (극한 기후 조건하에서 풍화된 화강암반 절취사면에 대한 장기적 안정성 연구)

  • Yang, Kwang-Yong;Park, Yeon-Jun;You, Kwang-Ho;Woo, Ik;Park, Chan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.655-662
    • /
    • 2003
  • Slope stability is an important issue ill civil engineering works or in open pit mines where both economy and efficiency is required. These are the long-term stability problems which depend on the change of physical properties under a certain weather condition. These can also result in progress of weathering which can change mechanical or hydro-geological properties of rock mass considerably. In this study, weathering in nature was simulated by freeze-thaw test and Soxhlet test which represent mechanical and chemical weathering respectively. Measured were elastic wave velocities, absorption rate, volume change. Uniaxial compression strengths before and after the weathering tests were also measured. The change in weight and volume of the specimens were not clearly related to the weathering process, but P, S wave velocities were clearly decreased as weathering progresses. For some class of rocks, P-wave velocity was increased probably because of the saturation due to improved connectivity of the pre-existing pores. Based on the test results, stability of the slopes were analyzed using FLAC$\^$2D/. Due to the reduced strength parameters, the factors of safety were decreased for the selected sites.

  • PDF

A Study on the Improvement of Validation and Application for Slipmeters using Reference Surfaces (표준 바닥재를 이용한 미끄럼 측정기의 검증방법 개선 및 활용방안)

  • Kim, Jung-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.6
    • /
    • pp.73-78
    • /
    • 2013
  • The purpose of this study was to evaluate three kinds of slipmeters (BOT, BPT, English XL) used on-site floor with ASTM F2508 which is comprised of four different standard surfaces(polished granite, glazed porcelain, vinyl composite tile ;VCT, and ceramic tile). ASTM F2508 has two criteria that decide which slipmeter is appropriate or not. The evaluated slipmeters were dreg sled, articulated sturt, and pendulum strike type. The test results revealed that two kinds of slipmeters(BOT, BPT) successfully ranked all four standard surfaces and differentiated among standard surfaces with varying degrees of slipperiness. Nevertheless, the measured value with BOT on the VCT, which was reported as slippery floor in previous study, was higher than its threshold(0.6). Although some slipmeter satisfy two criteria of ASTM F2508, they can underestimate the slip potential. So, another criteria is needed so as to reduce this problem. English XL couldn't properly measure slipperiness under the two kind of floors(glazed porcelain, VCT). So the slider of English XL was modified in order to meet two criteria of ASTM F2508.